

An Operational Semantics for UML RT-Statechart in Model Checking Context

Tao Zhang, Shaobin Huang, and Hongtao Huang
College of Computer Science and Technology

Harbin Engineering University
Harbin, Heilongjiang Province, China, 150001

zhangtaohrbeu@163.com;huangshaobin@hrbeu.edu.cn;hhtdeemail@gmail.com

Abstract—Model checking UML statechart can detect various
errors and inconsistencies of current system design in the early
process of development. However, because of classic statechart
lacking of real-time operational semantics, it can not be
directly used to verify real-time property of current system.
This paper introduces related definition of clock to extend
UML statechart to real-time UML statechart, defines the main
elements of statechart by tuple and proposes a middle
expression form of statechart SC. Through defining the
operational semantics of SC, the conversion from SC to
transition system is achieved and a conversion algorithm is
given. Based on the above theories , the general approach for
model checking SC is described, and in the end, a classic study
case of conversion from SC to TS is given.

Keywords-modelchecking; statechart; operational semantics;
transition system;real time

I. INTRODUCTION
Real-time system as a time-critical system, whose

behavior is typically subject to rather stringent time
constraints, can be a timely response to the occurrence of
random external events, and fast enough to complete the
event handling. For a train crossing control system, it is
essential that on detecting the approach of a train, the gate is
closed within a certain time bound in order to halt car and
pedestrian traffic before the train reaches the crossing. For a
radiation machine the time period during which a cancer
patient is subjected to a high dose of radiation is extremely
important; a small extension of this period is dangerous and
can cause the patient’s death. These show that in real-time
system, system correctness depends not only on the accuracy
of calculating, but also on the correct time of calculating.
Therefore, the key to real-time system design is to ensure the
specified time limits to respond.

System development must be related to modeling stage.
In the process of modeling real-time system, verifying design
model of system is a very important part in order to ensure
real-time property and reliability.

Unified Modeling Language (UML)[1] is a visual
modeling language which is used to record and exchange the
system design in the system development phase. It describes
the static structure and dynamic behavior of system model
with chart .UML statechart which is based on the classical
Harel’s statechart[2] is mainly used for modeling the
behavior and state changes of the object in the life cycle.

Model Checking[3] is an automatic analysis and
verification technology towards finite state concurrent
system in the formal verification process, which uses the
method of explicit state search or implicit fixed-point
computing to verify the modal or temporal property of
concurrent system.

Research on the model checking method of UML
statechart can detect various errors and inconsistencies of
system design in the early process of development, and save
a large number of financial, human and material resources
for system development.

However, the existing statechart does not have real-time
operational semantics, it can not get measure of time
performance from the statechart, so the existing model
checking method of UML statechart does not support
validation of strict real-time property. To solve this problem,
many researchers study the model checking method of real-
time system with the method of combining UML statechart
and sequence diagram. The typical studies are as follows:

Engels[4] gives a method of verifying consistency of
dynamic behavior of UML model. It first identifies the
consistency problem in the system model and selects an
appropriate semantic domain, then gives a reasonable
mapping rules, which maps UML behavioral model to the
semantic domain. Finally, the problem of model consistency
is analyzed and verified in this semantic domain.

Küster[5] uses UML-RT[6] to model the embedded real-
time system and to verify the consistency of syntax and
semantic of UML statechart and sequence diagram model,
and points out that time consistency is a special type of
semantic consistency.

A common method is to transform the dynamic model of
UML into Timed Automata for formal verification. Firley[7]
first transforms the UML sequence diagram into Timed
Automata, then uses model checking tool UPPAAL[8] for
formal verification of real-time system. Knapp[9] models the
dynamic behavior of real-time system with the UML
sequence diagram and statechart which is expanded by
adding time constraints, then transforms UML sequence
diagram and statechart into Timed Automata respectively.
Finally it uses model checking tool UPPAAL to verify the
consistency of these two models.

Li Xuan-dong[10] uses UML statechart network to
model the design model for real-time system, and uses UML
sequence diagram with real-time extension to model the
requirement based on the scene. Finally, an algorithm to

2009 Fourth International Conference on Internet Computing for Science and Engineering

978-0-7695-4027-6/10 $26.00 © 2010 IEEE

DOI 10.1109/ICICSE.2009.15

12

Authorized licensed use limited to: HARBIN ENGINEERING UNIV LIBRARY. Downloaded on November 18,2010 at 02:34:24 UTC from IEEE Xplore. Restrictions apply.

verify the consistency between the UML statechart and
sequence diagram is given.

The above methods have the following insufficiency:
first, although the UML sequence diagram can describe the
time sequence of dynamic behavior of real-time system, this
time relation can not be directly reflected in the state
transition process of real-time system; second, the ability of
UML sequence diagram to describe the time constraints is
weaker than Timed Computation Tree Logic(TCTL) .
Finally, the transition system obtained by the semantics of
sequence diagram and statechart is very complicated, this
methods greatly increase the difficulty of model checking.

In view of the above all sorts of problems, this paper
proposes a method of model checking the UML statechart of
real-time system. On the one hand, it introduces related
definition of clock to extend UML statechart to real-time
UML statechart(RTSC). By defining the real-time
operational semantics of the RTSC, it is converted to
transition system(TS). On the other hand , the time
constraints which is described by Timed Computation Tree
Logic is converted to the Timed Automata(TA) . With the
obtained TS and TA as the input of model checking
algorithm, the behavior of real-time system can be verified
whether or not to meet the time constraints.

Furthermore, the composite states, hierarchy process and
historical transformation of UML statechart destroy the
modularity of model structure, the statechart can not be
directly mapped to transition system, which makes model
checking statechart very difficult . The current method of
model checking UML statechart is first to convert statechart
to middle expression form, which flattens the hierachical
structure of statechart, then to convert middle expression
form to transition system for model checking. For the past
decade, there are many research results about this:

Li Liu-ying[11] proposes a kind of operational semantics
of UML statechart and Dong Wei[12] gives a method of
model checking UML statechart. The operational semantics
of UML statechart is defined by searching for the largest
conflict-free set of state transition for system which has
infinite calculating and is mapped to Büchi automata. Zhou
Ying[13] proposes an operational semantics for UML state
machine in model checking context. First the syntax and
static semantics of UML state machine are analyzed, then the
dynamic semantics of UML state machine is defined as a
transition system and related concepts and algorithms are
given.

In the above-mentioned methods, most of the conversion
processes of statechart only deal with the minimal subset of
the composition elements of the statechart and much
redundancy is introduced in the process of model checking.

The rest of the paper is organized as follows: Section 2
introduces the definition of syntax and static semantics of
RTSC; Section 3 defines the operational semantics of
RTSC; Section 4 introduces the method for model checking
RTSC; Section 5 gives a case study on converting RTSC to
TS; Finally, Section 6 concludes the paper.

II. DEFINITION OF SYNTAX AND STATIC SEMANTICS OF
RTSC

This paper uses tuple to express the state and transition of
UML statechart. For modeling real time system by UML
statechart, the related concepts of clock are introduced in the
definition of elements of UML statechart.

The clocks are used to formulate the real-time
assumptions on system behavior[14]:

Definition 1. Clock Constraint. A clock constraint over
set C of clocks is formed according to the grammar:

:: | | | |x c x c x c x cσ σ σ= < ≤ > ≥ ∧
Where, C N∈ and x C∈ . Let ()CC C denote the set of

clock constraint over C . Clock constraint that does not
contain any conjunctions is atomic. Let ()ACC C denote the
set of all atomic clock constraints over C .

Definition 2. Clock Valuation. A clock valuation η for a
set C of clocks is a function 0: C Rη ≥→ , assigning to each
clock x C∈ its current value ()xη .

We can formally define as a clock constraint to hold for a
clock valuation or not. The satisfaction relation |= is a relation
between clock valuation and clock constraint.

Definition 3. Satisfaction Relation for Clock Constraint.
For x C∈ , ()Eval Cη ∈ , c N∈ and g, ' ()g CC C∈ ,
let | () ()Eval C CC C= × be defined by:

• | trueη = ;

•
| x<c iff (x)<cη η= ;

•
| x c iff (x) cη η= ≤ ≤ ;

• | g iff not hold gη η= ¬ ;

• | ' iff |=g |=g'g gη η η= ∧ ∧ .
Letη be a clock valuation on C . For positive real d , dη +

denotes the clock valuation where all clocks of η are
increased by d .

 Formally, ()() ()d x x dη η+ = + for all clocks x C∈ .
reset x in η denotes the clock valuation which is equal to
η except that clock x reset. Formally:

() if
(reset in)()

0 if
y y x

x y
y x

η
η

⎧ ≠⎪
= ⎨

=⎪⎩
. (1)

There are two possible ways in which a statechart can
proceed: by taking a transition in the statechart, or by letting
time progress while staying in a state. In the underlying
transition system, the former is represented by a discrete
transition and the latter by a delay transition. In the former
case, the corresponding transition of the underlying transition
system is labeled with the action of the transition. In the
latter case, it is labeled with a positive real number indicating
the amount of time that has elapsed.

The abstract syntax of UML statechart can be expressed
by metamodel. The elements of abstract syntax of UML
statechart contain: State machine, State, Transition, guard,
event and action. They are defined in this paper as follows:

13

Authorized licensed use limited to: HARBIN ENGINEERING UNIV LIBRARY. Downloaded on November 18,2010 at 02:34:24 UTC from IEEE Xplore. Restrictions apply.

(1) State machine: (, , , ,)SM S T Stop sub type= , where, S
is a set of all states; T is a set of all transitions; Stop is a state

in outermost layer of SM; : 2ssub S → denotes the subset of
state s and for : ()s S Stop Sub s∀ ∈ ∉ , : {Basic,Or,type S →
And,Pseudo} is a type function.

(2) Basic State: (, , , , ())s sn en ac ex inv s= . where, sn
denotes the name of state with the unique expression;
en , ac , ex respectively denotes the entry, stay, exit action
occurred in the state; ()inv s is a time invariant which denotes
the time stay in the state, i.e., State s should be leave before
the ()inv s become ineffective, () Basictype s = .

(3) Or State:
 21

(, (, , ...,), , , , , , ())ks sn s s s l ts en ac ex inv s= .
Where, sn denotes the name of state, 1 2(, ,...,)ks s s is the
subset of s ; the active or state only has one active substate,

[1,]l k∈ is the serial number of the active substate and its
default value is 1 ; ts is the set of all transition among all the
substate, ()inv s ⊆ 1() ... ()kinv s inv s∨ ∨ , and () Ortype s = .

(4) And State: 1 2(, (, , ...,), , , , ())ks sn s s s en ac ex inv s= ,
where sn denotes the name of state; 1 2(, ,...,)ks s s is the subset
of s , all substates of the active And State are active
state; ()inv s ⊆ 1() ... ()kinv s inv s∨ ∨ .

(5) Least Common Ancestor (LCA) of the set of state: the
LCA of the non-empty sets U S⊆ is expressed as ()LCA U ,
where ()LCA U u= and u S∈ , iff:

1) ()U sub u⊆ ;
2) : () ()s S U sub s u sub s∀ ∈ ⊆ ⇒ ∈ .
(6) Two states , 's s S∈ are orthogonal, written 's s⊥ .

iff : 's s= or ((, ')) Andtype LCA s s = . If U S⊆ and
for (, ')s s U∀ ∈ , 's s⊥ holds, then U is orthogonal states set.
If ' ()s sub s∈ , there are preorder relation between s and 's ,
written 's s≤ . If 's s≤ and 's s≠ , then 's s< is a preorder
relation.

(7) Transition in the statechart can be defined as
follows: , (, , , , , , , ,)t T t tn ms sr event guard action td mt D∀ ∈ = w
here tn denotes the name of transition; ms and mt are the
main sources state and main target state of t respectively; sr
is the set of source restriction and td is the set of target
determinator; the event specifies the single event which
activates t ; the guard is a boolean expression that may be
attached to a transition in order to determine whether that
transition is enabled or not; the action denotes a set of action
occurred in the transition; ()D t denotes the set of the clock
variables which are reset in the transition.

(8) Least Common Ancestor(LCA) of transition: for
u S∀ ∈ and t T∈ , if ()LCA t u= , iff:

1) () ()sr sub u td sub u⊆ ∧ ⊆ ;
2) : () () ()s S u sub s sr sub s td sub s∀ ∈ ∈ ⇒ ⊆ ∧ ⊆ .
(9) Configuration Confi S⊆ denotes the global state in

State Machine. In the same time there may be many active
states in state machine, which constitute a global state of
State Machine, such that :

1) 1 ()s sub Stop∃ ∈ and s Confi∈ ;
2)if s Confi∈ and () Ortype s = , then

1 ' () : 's sub s s Confi∃ ∈ ∈ ;
3)if s Confi∈ and () Andtype s = ,then

' () : 's sub s s Confi∀ ∈ ∈ .
This paper uses allCon to denote the set of all

configuration of the State Machine, curcon to denote the

current configuration of the State Machine and inicon to
denote the initial configuration of the State Machine.

(10) defcon denotes the default configuration of
Composite State .The calculation rules are as follows:

1) If () Ortype s = , then () { } ()defcon s sn defcon sl= ∪ ;

2) If () Andtype s = , () { } { ()}
0

k
defcon s sn defcon sii

=
=
∪∪ .

(11) ds is the set of the innermost state of configuration,
() { | () }ds con s s con sub s con= ∈ ∧ = ∅∩ .
(12) ()PE con denotes the set of all possible events of

configuration con , it is defined as:
() { () | () ()}PE con event t sr t con guard t= ⊆ ∧

(13) (,)enable con e is the function which is used to
calculate all enable transitions when the event e occurs in the
configuration con :

(,) { | () () ()}enable con e t T sr t con e event t guard t= ∈ ⊆ ∧ ∈ ∧
Where ()sr t denotes the set of source restriction of

transition t ; ()event t denotes the event set of t and ()guard t
denotes the guard of t .

In the UML semantics documentation, the execution
semantics of the state machine are expressed in terms of the
operations of a hypothetical machine that implements a state
machine specification. In the general case, the key
components of this abstract machine are:

I) An event queue which accepts incoming event
instances;

II) A dispatcher which selects and dequeues event
instances for processing;

III) An event processor which processes dispatched event
instances according to the general semantics of UML state
machines and the specific form of the state machine in
question.

Event processing by a state machine is partitioned into
steps, each of which is caused by an event instance directed
to the state machine. The fundamental semantics assumes
that events are processed in sequence, where each event
stimulates a run-to-completion (RTC) step. The next external
event is dispatched to the state machine after the previous
RTC step has completed. This assumption simplifies the
transition function of the state machine since the incoming
event is processed only after the state machine has reached a
well-defined (stable) state configuration.

Once an event instance is dispatched, it may result in one
or multiple transitions being enabled for firing. By default, if
no transition is enabled, the event is discarded without any

14

Authorized licensed use limited to: HARBIN ENGINEERING UNIV LIBRARY. Downloaded on November 18,2010 at 02:34:24 UTC from IEEE Xplore. Restrictions apply.

effect. In case where one or more transitions are enabled, the
state machine selects a subset and fires them, moving the
state machine from one active state configuration to a new
active state configuration. This basic transformation is called
a step. Actions that result from taking the transition may
cause event instances to be generated for this and other
objects.

In the RTC step, the generated events by the action in a
transition are kept in the event queue Event , the completion
events are kept in the event queue comE , the events which are
generated for other objects are kept in the event queue

env
E .

In a given state, it is possible for several transitions to be
enabled within a state machine. The issue then is which ones
can be fired simultaneously without contradicting each other.

(14) (1, 2)confl t t is used to denote transition 1t and 2t
are contradicting each other:

1, 2 , , (1, 2)t t S con Confi confl t t true∀ ∈ ∀ ∈ = ⇔

 ((1)) ((2))sr t con sr t con ≠ ∅∩ ∩ ∩ .
Priorities can resolve transition conflicts, but not all of

them, we use the state hierarchy to define priorities among
conflicting transitions, a transition emanating from a substate
has higher priority than a conflicting transition emanating
from any of the containing states.

(15) FireT is used to denote the set of maximal non-
conflicting transition of configuration. If in the
configuration con , the enable transitions which are triggered
by event e can be defined as：

(,) { | () | ()}enable con e t e e t g tη= ∈ ∧ =
Then the corresponding conFireT is defined as follows:

1) 1, 2 : 1 2 (1, 2)cont t FireT t t confli t t∀ ∈ = ∨ ¬ ;

2) 1 (,) : 1 cont enable con e t FireT∀ ∈ ∈ ∨

(: 1 (1,))cont FireT t t confli t t∃ ∈ ≠ ∧ .

(16) ({ () | })con conD FireT D t t FireT= ∀ ∈∪ is used to

denote the clock variables which is reset in the conFireT .
In summary, the real-time UML statechart over the set of

clock variable C is defined as a tuple:
Definition 4. Real-time UML state chart, RTSC ：

0 ,(, , , , , ,)all iniRTSC Con Event Action Guard con g Inv T= , where:

• allCon is a set consisting of all configuration;
• Event denotes the set of all events of statechart;
• Action is the set of action occurred in all transitions

of statechart;
• { | ()}Guard g g CC C= ∈ is the set of conditions

which clock variable holds;
•

ini all
con Con∈ is initial configuration of statechart;

• 0g Guard∈ is initial condition which clock variable
holds;

• () : ()Inv con con CC C→ is time invariants of
configuration con ;

• T is set of all transition in statechart and have:

2C
all allT Con Event Guard Action Con⊆ × × × × × .

III. THE OPERATIONAL SEMANTICS OF RTSC
Transition system is often used in computer science as

models to describe the behavior of systems. The transition
system we used is defined as follows[14]:

Definition 5. Transition System (TS). A transition system

TS is a tuple: (, , , , ,)TS S Act I AP L= → where:
• S is a set of states and Act is a set of actions;
• S Act S→⊆ × × is a transition relation;
• I S⊆ is a set of initial states;
• AP is a set of atomic propositions;
• : 2APL S → is a labeling function.

The labeling function L relates a set () 2 APL s ∈ of
atomic propositions to any state s. ()L s intuitively stands for
exactly those atomic propositions a AP∈ which are satisfied
by state s. Given that Φ is a propositional logic formula, then
s satisfies the formula Φ if the evaluation induced by

()L s makes the formula Φ true; that is: s |=Φ iff L(s) |=Φ.
This paper defines the operational semantics of RTSC as

TS:
Definition 6. The operational semantics of RTSC.

For 0 ,(, , , , , ,)all iniRTSC Con Event Action Guard con g Inv T=
over the set of clock variables C , its operational semantics is
defined as a (, , , , ,)TS S Act I AP L= → :

• ()allS Con Event Eval C= × × ;
• R 0Act Action= ≥∪ ;
• 0(,0,)iniI con η= , where 0 denotes no event in inicon ;
• ()allAP Con ACC C= ∪ ;
• ((, ,)) { } { () | | }L con e con g ACC C gη η= ∈ =∪ ;
The transition relation →is defined by the following two

rules:
I) discrete transition: ', ', ', , con econ e α ηη > ⎯⎯→ << > if the

following conditions hold:
(a) there is a transition 'e g Dcon conα× × ×⎯⎯⎯⎯→ in RTSC;
(b) | gη = ;
(c) ' reset in Dη η= ;
(d) ' | (')Inv conη = .

II)delay transition: ,, d
con dcon ηη > ⎯⎯→< +< >for 0d R∈ ≥ :

(e) if | ()d Inv conη + = .

The definition 6 entails that how to convert a statechart to

a transition system, Algorithm 1 in TABLE I shows the
pseudocode for this basic process.

15

Authorized licensed use limited to: HARBIN ENGINEERING UNIV LIBRARY. Downloaded on November 18,2010 at 02:34:24 UTC from IEEE Xplore. Restrictions apply.

In Algorithm 1, the next configuration nextcon is
consisted of all the next states which are generated by every
transition caused by all states in the current
configuration curcon :

1
(,) (,)

n

cur con i i
i

nextC con FireT nextS s t
=

=∪ (2)

Where ,i cur i cons con t FireT∈ ∈ , and the computation rules
for (,)nextS s t are as follows:

(,) (, (), (()), , , ,)
(, (), , , , ,),

nextS s t sn sub s l lab mt t
s sn sub s l ts en ac ex

ts en ac
t t

e
s

x= =
= ∈

 (3)

Where ()lab s denotes the label of s in its parent state.

(, (), , , , ,) () ' () (
(,) (, (), ('), , ,

)
,)nextS s t sn sub

s sn sub s l ts en ac ex td t s sub
s l lab s

s t
ts

d
ac e

t
en x

= ∈
=

=
=

∧ ∩
 (4)

not revise any of the current designations.

TABLE I. THE ALGORITHM OF CONVERT RTSC TO TS

Algorithm1 Convert RTSC to TS
Input: the middle expression form of UML statechart, RTSC and
the set of clock constraints, ()CC C
output: the corresponding transition system, TS

Begin
construct the initial state 0(,0,)iniI con η= by inicon and 0η ;

0,cur inicon con η η= = ;

determine PE which is the set of all possible events of curcon ;

construct { (, ,) | }i cur i iCSS cs con e e PEη= = ∀ ∈

which is the set of current state of TS ;
connect the initial state I with all the current state ics CSS∈ ;
While(PE ≠ ∅) do{
for ics CSS∀ ∈ , determine conFireT which was triggered

by i ie cs∈ ;

determine the next configuration of curcon ;

(,)next cur concon nextC con FireT= ;

determine ' ()Eval Cη = after the transition triggered by ie is
completed;
determine 'PE which is the set of all possible events of nextcon ;

construct { (, ,) | '}i next i iNSS ns con e e PEη= = ∀ ∈
which is a set of all next sates of TS;

connect ics with all the corresponding

ns NSSi∀ ∈ ;

CSS NSS= ;
'PE PE= ;

}od
end

IV. THE METHOD OF MODEL CHECKING RTSC
The UML statechart with clock can be regarded as

complicated timed automata which has hierarchical structure.
RTSC is actually a timed automata form of flattening
statechart. After converting RTSC to TS, the Timed
Computation Tree Logic(TCTL)[14] is used to describe the
time constraints. Then the TS and TCTL formula are used as
the input of algorithm for model checking SC.

Definition 7. Syntax of Timed CTL. Formulae in TCTL
are either state or path formulae. TCTL state formulae over
the set AP of atomic propositions and set C of clocks are
formed according to the following grammar:

:: | | | | | |true a g ϕ ϕΦ = Φ ∧ Φ ¬Φ ∃ ∀

where , ()a AP g ACC C∈ ∈ and ϕ is a path formula

expressed by: :: Jϕ = Φ Φ∪ ,where 0J IR≥∈ is an interval
whose bounds are natural numbers.

The TCTL model-checking problem is to check for a
given timed automata TA and TCTL formula Φ
whether TA |= Φ .� The main difficulty of the TCTL model-
checking problem is that a transition system with
uncountable states has to be analyzed,� A naive graph
analysis in the state graph of TS(TA) is therefore not
feasible. Instead, the basic idea is to consider a finite quotient
of this transition system, the so-called region transition
system, which is obtained from the transition system of
timed automata TA and the TCTL formula Φ [14]. In
essence, the region transition system (TA,)RTS Φ is the
quotient of TS(TA) with respect to a bisimulation relation.
The states in the region transition system are equivalence
classes of states in TS(TA) that all satisfy the same atomic
clock constraints, and from which “ similar ” time-
divergent paths emanate, i.e., such states are TCTL
equivalent. As the number of equivalence classes is finite,
this provides a basis for TCTL model checking. In fact,
rather than checking the TCTL formula Φ , it is checked
whether a derived CTL formula holds in RTS(TA,)Φ .

In this paper, the RTSC is regarded as a complicated time
automata and is used to take the place of TA above-
mentioned. Algorithm 2 in TABLE II shows the basic recipe
of TCTL model checking.

TABLE II. BASIC RECIPE OF TCTL MODEL CHECKING

Algorithm2 Basic recipe of TCTL model checking�
Input: RTSC and TCTL formula Φ
Output: TA |= Φ

'Φ := eliminate the timing parameters from Φ ;�
construct the transition system ()TS SC
determine the equivalence classes under ≅ ;�
construct the region transition system ' ()TS RTS SC= ；�

apply the CTL model-checking algorithm to check ' | 'TS = Φ ;

|SC = Φ if and only if ' | 'TS = Φ .

16

Authorized licensed use limited to: HARBIN ENGINEERING UNIV LIBRARY. Downloaded on November 18,2010 at 02:34:24 UTC from IEEE Xplore. Restrictions apply.

In Algorithm 2,(the ()TS RTSC can be obtained from
Algorithm 1. 'Φ is a CTL formula that is obtained from the
TCTL formula by eliminating the time parameters from Φ
and ≅ denotes the equivalence used to obtain the
quotient (,)RTS SC Φ , the classic CTL model checking
method can be used to determine whether ' | 'TS = Φ can be
satisfied?, these approaches can be obtained from literature
[14].

V. A CASE STUDY ON COVERTING RTSC TO TS
Considering a railroad crossing control system, see the

schematic representation in Fig. 1[14]. For this railroad
crossing a control system needs to be developed that closes
the gate on receipt of a signal indicating that a train is
approaching and only opens the gate once the train has
signaled that it entirely crossed the road. The safety property
that should be established by the control system is that the
gates are always closed when the train is crossing the road.

Figure 1. Railroad crossing (time abstract)

The RT-UML statechart of railroad crossing control
system is illustrated in Fig. 2. The complete system consists
of the three components: Train, Gate, and Controller. The
Train is depicted in Fig. 2(left). Let us assume that the train
signals its approaching of the gate at least two time units
before it enters the railroad crossing. Besides, it is assumed
that the train has sufficient speed such that it leaves the
crossing five time units after approaching it, at the latest. On
approaching the gate, clock y is set to zero, and only if y > 2
is the train allowed enter the crossing.

1:t approach
()reset y

2y ≥
2 :t enter

5y ≤

3 :t ex it

true 1x≤

4:t lower
()reset x

true()reset x
6:t raise

7: 0t x≥

2x ≤

1z ≤

1z ≤

8:t approach

()reset z

1z = 9:t lower

10:t exit
()reset z

11:t raise

5t
5y ≤

Figure 2. The RT-UML statechart of railroad crossing control system

The Gate is depicted in Fig. 2(right).� Assuming that
lowering the gate takes at most a single time unit, and raising
the gate takes at least one and at most two time units. The
state n9 coming down with invariant 1x ≤ has been added to
model that the maximal delay between the occurrence of
action lower and the change to location down is at most a
single time unit. Clock x is set to zero on the occurrence of
action lower and thus “measures” the elapse of time since
that occurrence. By restricting the residence time of coming
down to 1x ≤ , the switch to down must be made within one
time unit. Note that this would not have been established by
having a direct edge between state n8 up and down with
guard 1x ≤ , as the value of x would not refer to the time of
occurrence of lower. In a similar way, the purpose of state
n11 goingup with invariant 2x ≤ is to model that raising the
gate takes at most two time units. In the initial state n8, no
constraints are imposed on the residence time, i.e.,
inv(n8)=true. The same applies to location down.

The Controller is depicted in Fig. 2(below) and is forced
to send the signal “lower” exactly after one time unit after
the Train has signaled its approaching.

Then the transition system of RTSC is obtained by
Definition 6 and Algorithm 1, see the corresponding

()TS RTSC depicted in Fig. 3.

17

Authorized licensed use limited to: HARBIN ENGINEERING UNIV LIBRARY. Downloaded on November 18,2010 at 02:34:24 UTC from IEEE Xplore. Restrictions apply.

0; 0x y= =

0; 0x y= =

5 1y z≤ ∧ ≤ 5 1y z≤ ∧ ≤

5 1y z≤ ∧ ≤ 5 1y x≤ ∧ ≤

5 1y x≤ ∧ ≤

5 1y x≤ ∧ ≤

5y ≤

1 1z x≤ ∧ ≤ 5y≤

1z ≤

2x≤

2x≤

5 2 1y x z≤ ∧ ≤ ∧ ≤

5 2 1y x z≤ ∧ ≤ ∧ ≤

5 2 1y x z≤ ∧ ≤ ∧ ≤
Figure 3. The TS of railroad crossing control system

There are eleven states and five events in RT-UML
Statechart of railroad crossing control system. Firstly, we
use RTSC to represent the statechart, for example, the parts
of states and transition are as follows:

For , [1,11]S iis ∈ ∈ ,

1 1 2 3 4(, (, ,), , ,)s n s s s= <> <> <>

2 2 5 6 7(, (, ,),5, 1, 2, 3 , , ,)s n s s s t t t= < > <> <> <>
For , [1,11]j T j∈ ∈ ,
1 (1,5, (), , , ,6,)t t approach null y= <> .

Note that this transition system contains the state

<(n7,n13,n8),lower, 5 1y z≤ ∧ ≤ >. In this state, the train is
at the crossing while the gate is still open. However, this
location turns out to be unreachable. It can only be reached
when 2y > , but as y and z are reset at the same time, 2y >
implies 2z > , which is impossible due to the location
invariant 1z ≤ .

VI. CONCLUSIONS
This paper introduces related concepts of clock to extend

the definition of UML statechart. Through defining the
operational semantics of RTSC, the conversion from RTSC,to
transition system is achieved and a conversion algorithm is
given. Based on the above theories, the general approach for
model checking RTSC, is described, and in the end, a classic
study case of conversion from RTSC, to TS is given.

In the process of defining the operation semantics
of RTSC , the sole statechart of real time system is
considered, this will make the representation of concurrent
action of system become relatively complex. Even if there
are many concurrent objects in the real time system, they are
also regarded as many concurrent states of sole statechart. So
in the future research, we will consider to separately model
each individual object in the concurrent systems and define
the composition operation of the operational semantics of
multiple concurrent objects in the real-time concurrent
systems.

ACKNOWLEDGMENT
This work is sponsored by the National Natural Science

Foundation of China under grant number 60873038.

REFERENCES
[1] OMG unified modeling language specification (Version 1.4).

Needham: Object Management Group, Inc., 2001.
[2] Mikk E, Lakhnech Y, Petersohn C, Siegel M. On formal semantics of

Statecharts as supported by STATEMATE. In: Duke D, Evans A, eds.
Proceedings of the 2nd BCS-FACS Northern Formal Methods
Workshop. London: Springer-Verlag, 1997.

[3] E.M. Clarke, O. Grumberg, D.A. Peled. Model Checking
[M].Cambridge, MA:MIT Press.1999.

[4] G. Engels, J. Kuster, R. Heckel et al. A Methodolgy for Specifying
and Analyzing Consistency of Object-Oriented Behavioral Models.
In:Proc of the 8th European software engineering conference, ACM
Press, 2001, 186-195.

[5] J.M. Küster, J. Stroop. Consistent Design of embedded Real-Time
Systems with UML-RT. In: 4th International Symposium on Object-
Oriented Real-Time Distributed Computing (ISORC’01) ,
Magdeburg, Germany, IEEE Computer Society Press, 2001, 31-40.

[6] B. Selic. Using UML for modeling complex real-time systems.
Springer-Verlag, 1999, LNCS 1474, 250-262.

[7] T. Firley, M. Huhn, K. Diethers et al. Timed Sequence Diagrams and
Tool-Based Analysis-A Case Study. Springer-Verlag, 1999,
LNCS1723, 645-660.

[8] G. Behrmann, A. David, J. Hakansson et al. UPPAAL4.0. In: 3rd
International Conference on the Quantitative Evaluation of Systems
(QEST’06), University of California, USA, IEEE Computer Society
Press, 2006, 125-126.

[9] A. Knapp, S. Merz, C. Rauh. Model Checking Timed UML State
Machines and Collaborations. Springer-Verlag, 2002, LNCS 2469,
395-416.

[10] Li Xuandong, Zhao Jian-hua, Gong Jia-yu. Verifying Compositional
Designs for Scenario-Based Timing Specifications. In: Proceedings of
the 7th IEEE International Symposium on Object-Oriented Real-Time
Distributed Computing (ISORC2004), Vienna, Austria, IEEE
Computer Society Press, 2004, 253-256.

[11] Li Liu-ying, Wang Ji, Qi Zhi-chang. An Operational Semantics for
UML Statechart Diagrams. Journal of Software, 2001, 12(12) : 1864-
1873.

[12] Dong Wei, Wang Ji, Qi Zhi-Chang. An Approach of Model Checking
UML Statecharts. Journal of Software, 2003, 14(4): 750-756.

[13] Zhou Ying, Zheng Guo-liang, Li Xuan-dong. An Operational
Semantics for UML State Machines in Model Checking Context.
ACTA ELECTRONICA SINICA, 2003, 12A : 2091-2095.

[14] Christel Baier, Joost-Pieter Katoen, Kim Guldstrand Larsen.
Principles of Model Checking. [M]. The MIT Press. May 31, 2008.

18

Authorized licensed use limited to: HARBIN ENGINEERING UNIV LIBRARY. Downloaded on November 18,2010 at 02:34:24 UTC from IEEE Xplore. Restrictions apply.

