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Abstract—Model checking UML statechart can detect various 
errors and inconsistencies of current system design in the early 
process of development. However, because of classic statechart 
lacking of real-time operational semantics, it can not be 
directly used to verify real-time property of current system. 
This paper introduces related definition of clock to extend 
UML statechart to real-time UML statechart, defines the main 
elements of statechart by tuple and proposes a middle 
expression form of statechart SC. Through defining the 
operational semantics of SC, the conversion from SC to 
transition system is achieved and a conversion algorithm is 
given. Based on the above theories , the general approach for 
model checking SC is described, and in the end, a classic study 
case of conversion from SC to TS is given. 

Keywords-modelchecking; statechart; operational semantics; 
transition system;real time 

I.  INTRODUCTION  
Real-time system as a time-critical system, whose 

behavior is typically subject to rather stringent time 
constraints, can be a timely response to the occurrence of 
random external events, and fast enough to complete the 
event handling. For a train crossing control system, it is 
essential that on detecting the approach of a train, the gate is 
closed within a certain time bound in order to halt car and 
pedestrian traffic before the train reaches the crossing. For a 
radiation machine the time period during which a cancer 
patient is subjected to a high dose of radiation is extremely 
important; a small extension of this period is dangerous and 
can cause the patient’s death. These show that in real-time 
system, system correctness depends not only on the accuracy 
of calculating, but also on the correct time of calculating. 
Therefore, the key to real-time system design is to ensure the 
specified time limits to respond. 

System development must be related to modeling stage. 
In the process of modeling real-time system, verifying design 
model of system is a very important part in order to ensure 
real-time property and reliability.  

Unified Modeling Language (UML)[1] is a visual 
modeling language which is used to record and exchange the 
system design in the system development phase. It describes 
the static structure and dynamic behavior of system model 
with chart .UML statechart which is based on the classical 
Harel’s statechart[2] is mainly used for modeling the 
behavior and state changes of the object in the life cycle.  

Model Checking[3] is an automatic analysis and 
verification technology towards finite state concurrent 
system in the formal verification process, which uses the 
method of explicit state search or implicit fixed-point 
computing to verify the modal or temporal property of 
concurrent system.  

Research on the model checking method of UML 
statechart can detect various errors and inconsistencies of 
system design in the early process of development, and save 
a large number of financial, human and material resources 
for system development. 

However, the existing statechart does not have real-time 
operational semantics, it can not get measure of time 
performance from the statechart, so the existing model 
checking method of UML statechart does not support 
validation of strict real-time property. To solve this problem, 
many researchers study the model checking method of real-
time system with the method of combining UML statechart 
and sequence diagram. The typical studies are as follows: 

Engels[4] gives a method of verifying consistency of 
dynamic behavior of UML model. It first identifies the 
consistency problem in the system model and selects an 
appropriate semantic domain, then gives a reasonable 
mapping rules, which maps UML behavioral model to the 
semantic domain. Finally, the problem of model consistency 
is analyzed and verified in this semantic domain. 

Küster[5] uses UML-RT[6] to model the embedded real-
time system and to verify the consistency of syntax and 
semantic of UML statechart and sequence diagram model, 
and points out that time consistency is a special type of 
semantic consistency. 

A common method is to transform the dynamic model of 
UML into Timed Automata for formal verification. Firley[7]  
first transforms the UML sequence diagram into Timed 
Automata, then uses model checking tool UPPAAL[8] for 
formal verification of real-time system. Knapp[9] models the 
dynamic behavior of real-time system with the UML 
sequence diagram and statechart which is expanded by 
adding time constraints, then transforms UML sequence 
diagram and statechart into Timed Automata respectively. 
Finally it uses model checking tool UPPAAL to verify the 
consistency of these two models. 

Li Xuan-dong[10] uses UML statechart network to 
model the design model for real-time system, and uses UML 
sequence diagram with real-time extension to model the 
requirement based on the scene. Finally, an algorithm to 
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verify the consistency between the UML statechart and 
sequence diagram is given. 

The above methods have the following insufficiency: 
first, although the UML sequence diagram can describe the 
time sequence of dynamic behavior of real-time system, this 
time relation can not be directly reflected in the state 
transition process of real-time system; second, the ability of 
UML sequence diagram to describe the time constraints is 
weaker than Timed Computation Tree Logic(TCTL) . 
Finally, the transition system obtained by the semantics of 
sequence diagram and statechart is very complicated, this 
methods greatly increase the difficulty of model checking.  

In view of the above all sorts of problems, this paper 
proposes a method of model checking the UML statechart of 
real-time system. On the one hand, it introduces related 
definition of clock to extend UML statechart to real-time 
UML statechart(RTSC). By defining the real-time 
operational semantics of the RTSC, it is converted to 
transition system(TS). On the other hand , the time 
constraints which is described by Timed Computation Tree 
Logic is converted to the Timed Automata(TA) . With the 
obtained TS and TA as the input of model checking 
algorithm, the behavior of real-time system can be verified 
whether or not to meet the time constraints. 

Furthermore, the composite states, hierarchy process and 
historical transformation of UML statechart destroy the 
modularity of model structure, the statechart can not be 
directly mapped to transition system, which makes model 
checking statechart very difficult . The current method of 
model checking UML statechart is first to convert statechart 
to middle expression form, which flattens the hierachical 
structure of statechart, then to convert middle expression 
form to transition system for model checking. For the past 
decade, there are many research results about this: 

Li Liu-ying[11] proposes a kind of operational semantics 
of UML statechart and Dong Wei[12] gives a method of 
model checking UML statechart. The operational semantics 
of UML statechart is defined by searching for the largest 
conflict-free set of state transition for system which has 
infinite calculating and is mapped to Büchi automata. Zhou 
Ying[13] proposes an operational semantics for UML state 
machine in model checking context. First the syntax and 
static semantics of UML state machine are analyzed, then the 
dynamic semantics of UML state machine is defined as a 
transition system and related concepts and algorithms are 
given. 

In the above-mentioned methods, most of the conversion 
processes of statechart only deal with the minimal subset of 
the composition elements of the statechart and much 
redundancy is introduced in the process of model checking. 

The rest of the paper is organized as follows: Section 2 
introduces the definition of syntax and static semantics of 
RTSC; Section 3 defines the operational semantics of  
RTSC; Section 4 introduces the method for model checking 
RTSC; Section 5 gives a case study on converting RTSC to 
TS; Finally, Section 6 concludes the paper. 

II. DEFINITION OF SYNTAX AND STATIC SEMANTICS OF 
RTSC 

This paper uses tuple to express the state and transition of 
UML statechart. For modeling real time system by UML 
statechart, the related concepts of clock are introduced in the 
definition of elements of UML statechart.  

The clocks are used to formulate the real-time 
assumptions on system behavior[14]: 

Definition 1. Clock Constraint. A clock constraint over 
set C of clocks is formed according to the grammar: 

:: | | | |x c x c x c x cσ σ σ= < ≤ > ≥ ∧  
Where, C N∈ and x C∈ . Let ( )CC C denote the set of 

clock constraint over C . Clock constraint that does not 
contain any conjunctions is atomic. Let ( )ACC C  denote the 
set of all atomic clock constraints over C . 

Definition 2. Clock Valuation. A clock valuation η for a 
set C of clocks is a function 0: C Rη ≥→ , assigning to each 
clock x C∈ its current value ( )xη . 

We can formally define as a clock constraint to hold for a 
clock valuation or not. The satisfaction relation |= is a relation 
between clock valuation and clock constraint. 

Definition 3. Satisfaction Relation for Clock Constraint. 
For x C∈ , ( )Eval Cη ∈ , c N∈ and g, ' ( )g CC C∈ , 
let | ( ) ( )Eval C CC C= × be defined by: 

• | trueη = ; 

• 
| x<c  iff  (x)<cη η= ; 

• 
| x c  iff  (x) cη η= ≤ ≤ ; 

• | g  iff  not hold gη η= ¬ ; 

• | '    iff  |=g  |=g'g gη η η= ∧ ∧ . 
Letη be a clock valuation on C . For positive real d , dη +  

denotes the clock valuation where all clocks of  η  are 
increased by d . 

 Formally, ( )( ) ( )d x x dη η+ = + for all clocks x C∈ .   
reset x  in η  denotes the clock valuation which is equal to 
η  except that clock x  reset. Formally: 

( )  if  
(reset in )( )

0         if 
y y x

x y
y x

η
η

⎧ ≠⎪
= ⎨

=⎪⎩
. (1) 

There are two possible ways in which a statechart can 
proceed: by taking a transition in the statechart, or by letting 
time progress while staying in a state. In the underlying 
transition system, the former is represented by a discrete 
transition and the latter by a delay transition. In the former 
case, the corresponding transition of the underlying transition 
system is labeled with the action of the transition. In the 
latter case, it is labeled with a positive real number indicating 
the amount of time that has elapsed. 

The abstract syntax of UML statechart can be expressed 
by metamodel. The elements of abstract syntax of UML 
statechart contain: State machine, State, Transition, guard, 
event and action. They are defined in this paper as follows: 
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(1) State machine: ( , , , , )SM S T Stop sub type= , where,  S 
is a set of all states; T is a set of all transitions; Stop  is a state 

in outermost layer of SM; : 2ssub S →  denotes the subset of 
state s and for : ( )s S Stop Sub s∀ ∈ ∉ , : {Basic,Or,type S →  
And,Pseudo}  is a type function. 

(2) Basic State: ( , , , , ( ))s sn en ac ex inv s= . where, sn  
denotes the name of state with the unique expression; 
en , ac , ex  respectively denotes the entry, stay, exit action 
occurred in the state; ( )inv s is a time invariant which denotes 
the time stay in the state, i.e., State s should be leave before 
the ( )inv s become ineffective, ( ) Basictype s = . 

(3) Or State:
 21

( , ( , , ..., ), , , , , , ( ))ks sn s s s l ts en ac ex inv s= . 
Where, sn  denotes the name of state, 1 2( , ,..., )ks s s  is the 
subset of s ; the active or state only has one active substate, 

[1, ]l k∈  is the serial number of the active substate and its 
default value is 1 ; ts  is the set of all transition among all the 
substate, ( )inv s ⊆ 1( ) ... ( )kinv s inv s∨ ∨ , and ( ) Ortype s = . 

(4) And State: 1 2( , ( , , ..., ), , , , ( ))ks sn s s s en ac ex inv s= , 
where sn denotes the name of state; 1 2( , ,..., )ks s s is the subset 
of s , all substates of the active And State are active 
state; ( )inv s ⊆ 1( ) ... ( )kinv s inv s∨ ∨ . 

(5) Least Common Ancestor (LCA) of the set of state: the 
LCA of the non-empty sets U S⊆ is expressed as ( )LCA U , 
where ( )LCA U u=  and u S∈  , iff:  

1) ( )U sub u⊆ ; 
2) : ( ) ( )s S U sub s u sub s∀ ∈ ⊆ ⇒ ∈ . 
(6) Two states , 's s S∈ are orthogonal, written 's s⊥  . 

iff : 's s= or ( ( , ')) Andtype LCA s s = . If U S⊆  and 
for ( , ')s s U∀ ∈ , 's s⊥ holds, then U is orthogonal states set. 
If ' ( )s sub s∈ , there are preorder relation between s and 's , 
written 's s≤ . If 's s≤  and 's s≠ , then 's s<  is a preorder 
relation. 

(7) Transition in the statechart can be defined as 
follows: , ( , , , , , , , , )t T t tn ms sr event guard action td mt D∀ ∈ = w
here tn  denotes the name of transition; ms and mt  are the 
main sources state and main target state of t  respectively; sr  
is the set of source restriction and td  is the set of target 
determinator; the event  specifies the single event which 
activates t ; the guard is a boolean expression that may be 
attached to a transition in order to determine whether that 
transition is enabled or not; the action denotes a set of action 
occurred in the transition; ( )D t  denotes the set of the clock 
variables which are reset in the transition. 

(8) Least Common Ancestor(LCA) of transition: for 
u S∀ ∈  and t T∈ , if ( )LCA t u= , iff: 

1) ( ) ( )sr sub u td sub u⊆ ∧ ⊆  ; 
2) : ( ) ( ) ( )s S u sub s sr sub s td sub s∀ ∈ ∈ ⇒ ⊆ ∧ ⊆ . 
(9) Configuration Confi S⊆  denotes the global state in 

State Machine. In the same time there may be many active 
states in state machine, which constitute a global state of 
State Machine, such that : 

1) 1 ( )s sub Stop∃ ∈ and s Confi∈ ;  
2)if s Confi∈ and ( ) Ortype s = , then 

1 ' ( ) : 's sub s s Confi∃ ∈ ∈ ; 
3)if s Confi∈ and ( ) Andtype s = ,then 

' ( ) : 's sub s s Confi∀ ∈ ∈ .  
This paper uses allCon  to denote the set of all 

configuration of the State Machine, curcon  to denote the 

current configuration of the State Machine and inicon  to 
denote the initial configuration of the State Machine. 

(10) defcon  denotes the default configuration of 
Composite State .The calculation rules are as follows: 

1) If ( ) Ortype s = , then ( ) { } ( )defcon s sn defcon sl= ∪ ; 

2) If ( ) Andtype s = , ( ) { } { ( )}
0

k
defcon s sn defcon sii

=
=
∪∪ . 

(11) ds is the set of the innermost state of configuration, 
( ) { | ( ) }ds con s s con sub s con= ∈ ∧ = ∅∩ . 
(12) ( )PE con denotes the set of all possible events of 

configuration con , it is defined as: 
( ) { ( ) | ( ) ( )}PE con event t sr t con guard t= ⊆ ∧  

(13) ( , )enable con e is the function which is used to 
calculate all enable transitions when the event e occurs in the 
configuration con : 

( , ) { | ( ) ( ) ( )}enable con e t T sr t con e event t guard t= ∈ ⊆ ∧ ∈ ∧  
Where ( )sr t  denotes the set of source restriction of 

transition t ; ( )event t denotes the event set of t  and ( )guard t   
denotes the guard  of t . 

In the UML semantics documentation, the execution 
semantics of the state machine are expressed in terms of the 
operations of a hypothetical machine that implements a state 
machine specification. In the general case, the key 
components of this abstract machine are: 

I) An event queue which accepts incoming event 
instances; 

II) A dispatcher which selects and dequeues event 
instances for processing; 

III) An event processor which processes dispatched event 
instances according to the general semantics of UML state 
machines and the specific form of the state machine in 
question. 

Event processing by a state machine is partitioned into 
steps, each of which is caused by an event instance directed 
to the state machine. The fundamental semantics assumes 
that events are processed in sequence, where each event 
stimulates a run-to-completion (RTC) step. The next external 
event is dispatched to the state machine after the previous 
RTC step has completed. This assumption simplifies the 
transition function of the state machine since the incoming 
event is processed only after the state machine has reached a 
well-defined (stable) state configuration. 

Once an event instance is dispatched, it may result in one 
or multiple transitions being enabled for firing. By default, if 
no transition is enabled, the event is discarded without any 
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effect. In case where one or more transitions are enabled, the 
state machine selects a subset and fires them, moving the 
state machine from one active state configuration to a new 
active state configuration. This basic transformation is called 
a step. Actions that result from taking the transition may 
cause event instances to be generated for this and other 
objects. 

In the RTC step, the generated events by the action in a 
transition are kept in the event queue Event , the completion 
events are kept in the event queue comE , the events which are 
generated for other objects are kept in the event queue 

env
E . 

In a given state, it is possible for several transitions to be 
enabled within a state machine. The issue then is which ones 
can be fired simultaneously without contradicting each other. 

(14) ( 1, 2)confl t t  is used to denote transition 1t  and 2t  
are contradicting each other: 

1, 2 , , ( 1, 2)t t S con Confi confl t t true∀ ∈ ∀ ∈ = ⇔  

 ( ( 1) ) ( ( 2) )sr t con sr t con ≠ ∅∩ ∩ ∩ .   
Priorities can resolve transition conflicts, but not all of 

them, we use the state hierarchy to define priorities among 
conflicting transitions, a transition emanating from a substate 
has higher priority than a conflicting transition emanating 
from any of the containing states. 

(15) FireT  is used to denote the set of maximal non-
conflicting transition of configuration. If in the 
configuration con , the enable transitions which are triggered 
by event  e  can be defined as： 

( , ) { | ( ) | ( )}enable con e t e e t g tη= ∈ ∧ =  
Then the corresponding conFireT is defined as follows:  

1) 1, 2 : 1 2 ( 1, 2)cont t FireT t t confli t t∀ ∈ = ∨ ¬ ; 

2) 1 ( , ) : 1 cont enable con e t FireT∀ ∈ ∈ ∨  

( : 1 ( 1, ))cont FireT t t confli t t∃ ∈ ≠ ∧ . 

(16) ( { ( ) | })con conD FireT D t t FireT= ∀ ∈∪ is used to 

denote the clock variables which is reset in the conFireT . 
In summary, the real-time UML statechart over the set of 

clock variable C is defined as a tuple: 
Definition 4. Real-time UML state chart, RTSC ： 

0 ,( , , , , , , )all iniRTSC Con Event Action Guard con g Inv T= , where: 

• allCon is a set consisting of all configuration; 
• Event denotes the set of all events of statechart;  
• Action  is the set of action occurred in all transitions 

of statechart;  
• { | ( )}Guard g g CC C= ∈ is the set of conditions 

which clock variable holds;  
• 

ini all
con Con∈ is initial configuration of statechart;  

• 0g Guard∈  is initial condition which clock variable 
holds;  

• ( ) : ( )Inv con con CC C→ is time invariants of 
configuration con ; 

• T is set of all transition in statechart and have: 

2C
all allT Con Event Guard Action Con⊆ × × × × × . 

III. THE OPERATIONAL SEMANTICS OF RTSC  
Transition system is often used in computer science as 

models to describe the behavior of systems. The transition 
system we used is defined as follows[14]: 

 
Definition 5. Transition System (TS). A transition system 

TS is a tuple: ( , , , , , )TS S Act I AP L= →  where:  
• S is a set of states and Act  is a set of actions; 
• S Act S→⊆ × × is a transition relation;  
• I S⊆  is a set of initial states; 
• AP is a set of atomic propositions; 
• : 2APL S → is a labeling function.  
 

The labeling function L relates a set ( ) 2 APL s ∈ of 
atomic propositions to any state s. ( )L s  intuitively stands for 
exactly those atomic propositions a AP∈  which are satisfied 
by state s. Given that Φ is a propositional logic formula, then 
s satisfies the formula Φ if the evaluation induced by 

( )L s makes the formula Φ true; that is: s |=Φ  iff  L(s) |=Φ. 
This paper defines the operational semantics of RTSC as 

TS: 
Definition 6. The operational semantics of RTSC. 

For 0 ,( , , , , , , )all iniRTSC Con Event Action Guard con g Inv T=  
over the set of clock variables C , its operational semantics is 
defined as a ( , , , , , )TS S Act I AP L= → : 

 
• ( )allS Con Event Eval C= × × ; 
• R 0Act Action= ≥∪ ; 
• 0( ,0, )iniI con η= , where 0 denotes no event in inicon ; 
• ( )allAP Con ACC C= ∪ ; 
• (( , , )) { } { ( ) | | }L con e con g ACC C gη η= ∈ =∪ ; 
The transition relation →is defined by the following two 

rules: 
I) discrete transition: ', ', ', , con econ e α ηη > ⎯⎯→ << >  if the 

following conditions hold: 
(a) there is a transition 'e g Dcon conα× × ×⎯⎯⎯⎯→ in RTSC; 
(b) | gη = ; 
(c) '  reset  in Dη η= ; 
(d) ' | ( ')Inv conη = . 

II)delay transition: ,, d
con dcon ηη > ⎯⎯→< +< >for 0d R∈ ≥ : 

(e) if | ( )d Inv conη + = . 
 
The definition 6 entails that how to convert a statechart to 

a transition system, Algorithm 1 in TABLE I shows the 
pseudocode for this basic process. 
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In Algorithm 1, the next configuration nextcon  is 
consisted of all the next states which are generated by every 
transition caused by all states in the current 
configuration curcon : 

1
( , ) ( , )

n

cur con i i
i

nextC con FireT nextS s t
=

=∪  (2) 

Where ,i cur i cons con t FireT∈ ∈ , and the computation rules 
for ( , )nextS s t  are as follows: 

( , ) ( , ( ), ( ( )), , , , )
( , ( ), , , , , ),

nextS s t sn sub s l lab mt t
s sn sub s l ts en ac ex

ts en ac
t t

e
s

x= =
= ∈

  (3) 

Where ( )lab s denotes the label of s in its parent state. 

( , ( ), , , , , ) ( ) ' ( ) (
( , ) ( , ( ), ( '), , ,

)
, )nextS s t sn sub

s sn sub s l ts en ac ex td t s sub
s l lab s

s t
ts

d
ac e

t
en x

= ∈
=

=
=

∧ ∩
 (4) 

not revise any of the current designations. 

TABLE I.  THE ALGORITHM OF CONVERT RTSC TO TS 

Algorithm1 Convert RTSC to TS 
Input: the middle expression form of UML statechart, RTSC and 
the set of clock constraints, ( )CC C  
output: the corresponding transition system, TS 

Begin 
construct the initial state 0( ,0, )iniI con η= by inicon and 0η ; 

0,cur inicon con η η= = ; 

determine PE which is the set of all possible events of curcon ; 

construct { ( , , ) | }i cur i iCSS cs con e e PEη= = ∀ ∈  

which is the set of current state of TS ; 
connect the initial state I with all the current state ics CSS∈ ; 
While( PE ≠ ∅ ) do{  
for ics CSS∀ ∈ , determine conFireT which was triggered 

by i ie cs∈ ; 

determine the next configuration of curcon ; 

( , )next cur concon nextC con FireT= ; 

determine ' ( )Eval Cη = after the transition triggered by ie is 
completed; 
determine 'PE which is the set of all possible events of nextcon ; 

construct { ( , , ) | '}i next i iNSS ns con e e PEη= = ∀ ∈  
which is a set of all next sates of TS; 

connect ics with all the corresponding 

ns NSSi∀ ∈ ; 

CSS NSS= ; 
'PE PE= ; 

}od 
end 

 

IV. THE METHOD OF MODEL CHECKING RTSC  
The UML statechart with clock can be regarded as 

complicated timed automata which has hierarchical structure. 
RTSC is actually a timed automata form of flattening 
statechart. After converting RTSC to TS, the Timed 
Computation Tree Logic(TCTL)[14] is used to describe the 
time constraints. Then the TS and TCTL formula are used as 
the input of algorithm for model checking SC.  

Definition 7. Syntax of Timed CTL. Formulae in TCTL 
are either state or path formulae. TCTL state formulae over 
the set AP of atomic propositions and set C of clocks are 
formed according to the following grammar: 

 
:: | | | | | |true a g ϕ ϕΦ = Φ ∧ Φ ¬Φ ∃ ∀  

 
where , ( )a AP g ACC C∈ ∈ and ϕ is a path formula 

expressed by: :: Jϕ = Φ Φ∪ ,where 0J IR≥∈ is an interval 
whose bounds are natural numbers. 

The TCTL model-checking problem is to check for a 
given timed automata TA and TCTL formula Φ  
whether TA |= Φ .� The main difficulty of the TCTL model-
checking problem is that a transition system with 
uncountable states has to be analyzed,� A naive graph 
analysis in the state graph of TS(TA) is therefore not 
feasible. Instead, the basic idea is to consider a finite quotient 
of this transition system, the so-called region transition 
system, which is obtained from the transition system of 
timed automata TA and the TCTL formula Φ [14]. In 
essence, the region transition system (TA, )RTS Φ  is the 
quotient of  TS(TA) with respect to a bisimulation relation. 
The states in the region transition system are equivalence 
classes of states in TS(TA) that all satisfy the same atomic 
clock constraints, and from which “ similar ”  time-
divergent paths emanate, i.e., such states are TCTL 
equivalent. As the number of equivalence classes is finite, 
this provides a basis for TCTL model checking. In fact, 
rather than checking the TCTL formula Φ , it is checked 
whether a derived CTL formula holds in RTS(TA, )Φ . 

In this paper, the RTSC is regarded as a complicated time 
automata and is used to take the place of TA above-
mentioned. Algorithm 2 in TABLE II shows the basic recipe 
of TCTL model checking. 

TABLE II.  BASIC RECIPE OF TCTL MODEL CHECKING 

Algorithm2 Basic recipe of TCTL model checking�
Input: RTSC and TCTL formula Φ   
Output: TA |= Φ  

'Φ := eliminate the timing parameters from Φ ;�
construct the transition system ( )TS SC  
determine the equivalence classes under ≅ ;�
construct the region transition system ' ( )TS RTS SC= ；�

apply the CTL model-checking algorithm to check ' | 'TS = Φ ; 

|SC = Φ  if and only if ' | 'TS = Φ . 
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In Algorithm 2,( the ( )TS RTSC can be obtained from 
Algorithm 1. 'Φ is a CTL formula that is obtained from the 
TCTL formula by eliminating the time parameters from Φ  
and ≅  denotes the equivalence used to obtain the 
quotient ( , )RTS SC Φ , the classic CTL model checking 
method can be used to determine whether ' | 'TS = Φ can be 
satisfied?, these approaches can be obtained from literature 
[14]. 

V. A CASE STUDY ON COVERTING  RTSC TO TS  
Considering a railroad crossing control system, see the 

schematic representation in Fig. 1[14]. For this railroad 
crossing a control system needs to be developed that closes 
the gate on receipt of a signal indicating that a train is 
approaching and only opens the gate once the train has 
signaled that it entirely crossed the road. The safety property 
that should be established by the control system is that the 
gates are always closed when the train is crossing the road. 

 

 
Figure 1.   Railroad crossing (time abstract) 

The RT-UML statechart of railroad crossing control 
system is illustrated in Fig. 2. The complete system consists 
of the three components: Train, Gate, and Controller. The 
Train is depicted in Fig. 2(left). Let us assume that the train 
signals its approaching of the gate at least two time units 
before it enters the railroad crossing. Besides, it is assumed 
that the train has sufficient speed such that it leaves the 
crossing five time units after approaching it, at the latest. On 
approaching the gate, clock y is set to zero, and only if y > 2 
is the train allowed enter the crossing.  

 

1:t approach
( )reset y

2y ≥
2 :t enter

5y ≤

3 :t ex it

true 1x≤

4:t lower
( )reset x

true( )reset x
6:t raise

7: 0t x≥

2x ≤

1z ≤

1z ≤

8:t approach

( )reset z

1z = 9:t lower

10:t exit
( )reset z

11:t raise

5t
5y ≤

 
Figure 2.  The RT-UML statechart of railroad crossing control system 

The Gate is depicted in Fig. 2(right).� Assuming that 
lowering the gate takes at most a single time unit, and raising 
the gate takes at least one and at most two time units. The 
state n9 coming down with invariant 1x ≤  has been added to 
model that the maximal delay between the occurrence of 
action lower and the change to location down is at most a 
single time unit. Clock x is set to zero on the occurrence of 
action lower and thus “measures” the elapse of time since 
that occurrence. By restricting the residence time of coming 
down to 1x ≤ , the switch to down must be made within one 
time unit. Note that this would not have been established by 
having a direct edge between state n8 up and down with 
guard 1x ≤ , as the value of x would not refer to the time of 
occurrence of lower.  In a similar way, the purpose of state 
n11 goingup with invariant 2x ≤ is to model that raising the 
gate takes at most two time units. In the initial state n8, no 
constraints are imposed on the residence time, i.e., 
inv(n8)=true. The same applies to location down.  

The Controller is depicted in Fig. 2(below) and is forced 
to send the signal “lower” exactly after one time unit after 
the Train has signaled its approaching. 

Then the transition system of RTSC  is obtained by 
Definition 6 and Algorithm 1, see the corresponding  

( )TS RTSC  depicted in Fig. 3. 
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0; 0x y= =

0; 0x y= =

5 1y z≤ ∧ ≤ 5 1y z≤ ∧ ≤

5 1y z≤ ∧ ≤ 5 1y x≤ ∧ ≤

5 1y x≤ ∧ ≤

5 1y x≤ ∧ ≤

5y ≤

1 1z x≤ ∧ ≤ 5y≤

1z ≤

2x≤

2x≤

5 2 1y x z≤ ∧ ≤ ∧ ≤

5 2 1y x z≤ ∧ ≤ ∧ ≤

5 2 1y x z≤ ∧ ≤ ∧ ≤  
Figure 3.  The TS of railroad crossing control system 

There are eleven states and five events in RT-UML 
Statechart of railroad crossing control system. Firstly, we 
use RTSC to represent the statechart, for example, the parts 
of states and transition are as follows:  

For , [1,11]S iis ∈ ∈ , 

1 1 2 3 4( , ( , , ), , , )s n s s s= <> <> <>   

2 2 5 6 7( , ( , , ),5, 1, 2, 3 , , , )s n s s s t t t= < > <> <> <>  
For , [1,11]j T j∈ ∈ , 
1 ( 1,5, (), , , ,6, )t t approach null y= <> . 

 
Note that this transition system contains the state 

<(n7,n13,n8),lower, 5 1y z≤ ∧ ≤ >. In this state, the train is 
at the crossing while the gate is still open. However, this 
location turns out to be unreachable. It can only be reached 
when 2y > , but as y and z are reset at the same time, 2y >  
implies 2z > , which is impossible due to the location 
invariant 1z ≤ . 

VI. CONCLUSIONS  
This paper introduces related concepts of clock to extend 

the definition of UML statechart. Through defining the 
operational semantics of RTSC, the conversion from RTSC,to 
transition system is achieved and a conversion algorithm is 
given. Based on the above theories, the general approach for 
model checking RTSC, is described, and in the end, a classic 
study case of conversion from RTSC, to TS is given. 

In the process of defining the operation semantics 
of RTSC , the sole statechart of real time system is 
considered, this will make the representation of concurrent 
action of system become relatively complex. Even if there 
are many concurrent objects in the real time system, they are 
also regarded as many concurrent states of sole statechart. So 
in the future research, we will consider to separately model 
each individual object in the concurrent systems and define 
the composition operation of the operational semantics of 
multiple concurrent objects in the real-time concurrent 
systems.  
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