An Introduction to Perl Programming
Dave Cross
Magnum Solutions Ltd

dave(@mag-sol.com

Open Source Consultancy, Development & Training

What We Will Cover

What 1s Perl?
Creating and running a Perl program
Perl variables

Operators and Functions

What We Will Cover

Conditional Constructs
Subroutines
Regular Expressions

Further Information

Open Source Consultancy, Development & Training

Perl's Name

Practical Extraction and Reporting
Language
Pathologically Eclectic Rubbish Lister

"Perl" 1s the language
"perl" 1s the compiler

Never "PERL"

Typical uses of Perl

Text processing

System administration tasks
CGI and web programming
Database 1nteraction

Other Internet programming

Less typical uses of Perl

* Human Genome Project
*NASA

What is Perl Like?

General purpose programming language
Free (open source)

Fast

Flexible

Secure

Dynamic

The Perl Philosophy

* There's more than one way to do it

* Three virtues of a programmer
* Laziness

* Impatience
* Hubris

* Share and enjoy!

Open Source Consultancy, Development & Training

Creating a Perl Program

* Our first Perl program
print "Hello world\n";

* Put this 1n a file called hello.pl

Running a Perl Program

* Running a Perl program from the command
line

* perl hello.pl

Running a Perl Program

* The "shebang" line (Unix, not Perl)
#!/usr/bin/perl

* Make program executable
chmod +x hello.pl

* Run from command line
./hello.pl

Perl Comments

* Add comments to yout code

* Start with a hash (#)

* Continue to end of line

* # This i1s a hello world program
print "Hello, world!\n"; # print

Command Line Options

* Many options to control execution of the
program
* For example, —w turns on warnings

* Use on command line
perl -w hello.pl

* Or on shebang line
#!/usr/bin/perl -w

Open Source Consultancy, Development & Training

What is a Variable?

* A place where we can store data

* A variable needs a name to

- retrieve the data stored in it

- put new data in 1t

Variable Names

* Contain alphanumeric characters and
underscores

* User variable names may not start with
numbers

* Variable names are preceded by a
punctuation mark indicating the type of
data

Types of Perl Variable

* Different types of variables start with a
different symbol
- Scalar variables start with $
- Array variables start with (@

- Hash variables start with %
* More on these types soon

Declaring Variables

* You don't need to declare variables 1n Perl
* But it's a very good i1dea
- typos
- scoping
* Using the strict pragma
use strict;
my S$var;

Scalar Variables

Store a single 1tem of data

my Sname = "Dave";

my S$whoami = 'Just Another Perl
Hacker';

my Smeaning of life = 42;

my Snumber less than 1 = 0.000001;

my Svery large number = 3.27el7;
3.27 times 10 to the power of 17

Open Source Consultancy, Development & Training

Type Conversions

* Perl converts between strings and numbers
whenever necessary

* # add int to a floating point number
my Ssum = Smeaning of life +
snumber less than 1;

* # putting the number in a string

print "S$name says, 'The meaning of
life is $sum.'\n";

Open Source Consultancy, Development & Training

Quoting Strings

* Single quotes don't expand variables or
escape sequences

my Sprice = '$9.95"';

* Double quotes do
my Sinvline = "24 widgets @ Sprice
each\n";

* Use a backslash to escape special

characters in double quoted strings
print "He said \"The price is \$300\"";
~ Solutit

Open Source Consultancy, Development & Training

Better Quote Marks

* This can look ugly
print "He said \"The price is \S$300\"";
* This 1s a tidier alternative

print gg(He said "The price is \$300");

* Also works for single quotes

print g(He said "That's too expensive");

Open Source Consultancy, Development & Training

Undefined Values

A scalar variable that hasn't had data put into
it will contain the special value “undef”

Test for 1t with “defined()” function

1f (defined(Smy var)) { ... }
You can assign undef yourself

Svar = undef

undef Svar

Array Variables

* Arrays contain an ordered list of scalar
values

* my @fruit = ('apples', 'oranges',
'guavas',
'passionfruit', 'grapes');

°* my @magic numbers = (23, 42, 69);

* my @random scalars = ('mumble', 123.45,
'dave cross',
-300, S$name);

Solutic

Open Source Consultancy, Development & Training

Array Elements

Accessing individual elements of an array

print Sfruits([0];
prints "apples"

print S$random scalars[2];
prints "dave cross"

Note use of $ as individual element of an
array 1s a scalar

Open Source Consultancy, Development & Training

Array Slices

Returns a list of elements from an array

print @fruits([0,2,4];
prints "apples", "guavas",

"grapes"

print @fruits[l .. 3];

prints "oranges", "guavas",
"passionfruit"

Note use of (@ as we are accessing more
than one element of the array

Open Source Consultancy, Development & Training

Setting Array Values

Sarray[4] = 'something';
Sarray[400] = 'something else';
Also with slices

darrayi(4, 7 .. 9] = ('four', 'seven',
'eight', 'nine');

Qarray[l, 2] = Qarray[2, 11;
Doesn't need to be an array!
($x%, $Y) = ($YI $X) ;

Array Size

* S#array is the index of the last element
In @array

* Therefore S#array + 1 1sthe number of

clements
* Scount = (@array;
or Scount = scalar @Qarray

does the same thing and 1s easier to
understand

Hash Variables

* Hashes implement “look-up tables” or
“dictionaries”
* Initialised with a list
$french = ('one', 'un', 'two', 'deux',
'"three', 'trois');

* "fat comma" (=>) 1s easier to understand
sgerman = (one => 'ein',
two => 'zweil',
three => 'drei');

Open Source Consultancy, Development & Training

Accessing Hash Values

* Sthree = Sfrench{three};
* print Sgerman{two};

* As with arrays, notice the use of $ to
indicate that we're accessing a single value

Hash Slices

* Just like array slices

* Returns a list of elements from a hash
print @french{'one', 'two', 'three'};
prints "un", "deux" & "trois"

* Again, note use of (@ as we are accessing
more than one value from the hash

Open Source Consultancy, Development & Training

Setting Hash Values

Shash{foo} = 'something';

Shash{bar} = 'something else’';

Also with slices

@hash{'foo', 'bar'} =
('something', 'else');

@hash{'foo', 'bar'} =
@hash{'bar', 'foo'};

More About Hashes

Hashes are not sorted
There 1s no equivalent to S#array
print %hash 1S unhelpful

We'll see ways round these restrictions later

Special Perl Variables

Perl has many special variables

Many of them have punctuation marks as
names

Others have names in ALL. CAPS

They are documented in perlvar

The Default Variable

* Many Perl operations either set s or use its
value 1f no other 1s given
print; # prints the value of 5

* If a piece of Perl code seems to be missing

a variable, then 1t's probably using s

Using $

* while (KFILE>) {
if (/regex/) |
print;

J

* Three uses of §

A Special Array

WARGV

Contains your program's command line
arguments
perl printargs.pl foo bar baz

my Snum = @ARGV;
print "$num arguments: @ARGV\n";

A Special Hash

* SENV

* Contains the environment variables that
your script has access to.

* Keys are the variable names
Values are the... well... values!

* print SENV{PATH};

Open Source Consultancy, Development & Training

Operators and Functions

* What are operators and functions?
- "Things" that do "stuff"
- Routines built into Perl to manipulate data

- Other languages have a strong distinction
between operators and functions - in Perl that
distinction can be a bit blurred

- See perlop and perlfunc

Arithmetic Operators

* Standard arithmetic operations
add (+), subtract (-), multiply (*), divide (/)

* Less standard operations
modulus (%), exponentiation (**)

* Sspeed = S$distance / Stime;
svol = $length * Sbreadth * Sheight;
Sarea = Spil * (Sradius ** 2);
sodd = Snumber $ 2;

Shortcut Operators

Often need to do things like
Stotal = Stotal + Samount;

Can be abbreviated to

Stotal += Samount;

Even shorter

Sx++; # same as $x += 1 or S$Sx
Sy--; # same as Sy -= 1 or Sy

Sx + 1
sy - 1

Subtle difference between Sx++ and ++Sx

Open Source Consultancy, Development & Training

String Operators

* Concaternation (.)
Sname = Sfirstname . ' ' . Ssurname;

* Repetition (x)
Sline = '-' x 80;
Spolice = 'hello ' x 3;

* Shortcut versions available
Spage .= $line; # S$page = Spage . Sline
Sthing x= $i; # Sthing = $thing x $i

File Test Operators

Check various attributes of a file
—e $file does the file exist

-r Sfile 1S t!
~w S$file 1St
~d $file 1St

he 11
he 11
he 11

—f $file 1St

e readable
e writeable
e a directory

he fi

e a normal file

-T $file 1S a text file
-B $file 1s a binary file

Functions

* Have longer names than operators
* Can take more arguments than operators
* Arguments follow the function name

* See perlfunc for a complete list of Perl's
built-in functions

Function Return Values

* Functions can return scalars or lists (or
nothing)

* Sage = 29.75;
Syears = int (Sage);
* @list = ('a', 'random',
'collection', 'of',
'words') ;
@sorted = sort(@list) ;
a collection of random words

String Functions

length returns the length of a string
$len = length $Sa string;

uc and 1c return upper and lower case

versions of a string

Sstring = 'MiXeD CaSe';

print "S$string\n", uc $string, "\n",
lc $string;

See also ucfirst and 1cfirst

Open Source Consultancy, Development & Training

More String Functions

* chop removes the last character from a

string and returns it
sword = 'word';
Sletter = chop S$Sword;

* chomp removes the last character only 1f 1t
1s a newline and returns true or false
appropriately

Substrings

* substr returns substrings from a string

$Sstring = 'Hello world';
print substr ($string, 0, 5);
prints 'Hello'

* Unlike many other languages you can

assign to a substring

substr ($string, 0, 5) = 'Greetings';
print S$string;

prints 'Greetings world'

Open Source Consultancy, Development & Training

Numeric Functions

abs returns the absolute value

cos, sin standard trigonometric functions
exp €xponentiation using e

log logarithm to base e

rand returns a random number

sqrt returns the square root

Open Source Consultancy, Development & Training

Array Manipulation

* push adds a new element to the end of an

array
push @array, Svalue;

* pop removes and returns the last element 1n

an array
Svalue = pop (@array;

* shift and unshift do the same for the
start of an array

Array Manipulation

* sort returns a sorted list (it does not sort

the list 1in place)
dsorted = sort @array;

* sort does a lot more besides, see the docs
(perldoc -1 sort)

* reverse returns a reversed list
dreverse = reverse (@darray;

Arrays and Strings

* join takes an array and returns a string
darray = (1 .. 5);
Sstring = join ' ', (@array;
Sstring is 'l 2 3 4 5!

* split takes a string and converts it into an
array
Sstring = '1~2~3~4~5";
darray = split(/~/, $string);
Qarray 1is (1, 2, 3, 4, b5)

Hash Functions

delete removes a key/value pair from a
hash

exists tells you 1f an element exists 1n a
hash

keys returns a list of all the keys 1n a hash

values returns a list of all the values in a
hash

File Operations

* open opens a file and associates 1t with a

filehandle
open (FILE, 'in.dat');

* You can then read the file with <FILE>
Sline = <FILE>; # one line
@lines = <FILE>; # all lines

* Finally, close the file with close
close (FILE) ;

Other File Functions

read to read a fixed number of bytes into a

buffer
Sbytes = read (FILE, Sbuffer, 1024);

seek to move to a random postion in a file
seek (FILE, 0, 0);

tell to get current file position
Swhere = tell FILE;

truncate to truncate file to given size
truncate FILE, Swhere;

Open Source Consultancy, Development & Training

Time Functions

t ime returns the number of seconds since
Jan 1st 1970

Snow = time;

localtime converts that into more usable
values

($sec, Smin, Shour, Smday, Smon,
Syear, S$wday, S$Syday, Sisdst) =
localtime (Snow) ;

Open Source Consultancy, Development & Training

localtime Caveats

* Smoni1s0to 11
* Syear 1s years since 1900
* Swday 1s 0 (Sun) to 6 (Sat)

Open Source Consultancy, Development & Training

Conditional Constructs

* Conditional constructs allow us to choose
different routes of execution through the
program

* This makes for far more interesting
programs

* The unit of program execution 1s a block of
code

* Blocks are delimited with braces { ... }

Conditional Constructs

Conditional blocks are controlled by the
evaluation of an expression to see if 1t 1s
true or false

But what 1s truth?

What is Truth?

* In Perl 1t's easier to answer the question

"what 1s false?"
= 0 (the number zero)

- " (the empty string)
- undef (an undefined value)
- () (an empty list)

* Everything else 1s true

Comparison Operators

* Compare two values in some way

- are they equal
Sx == SyOor$x eq Sy
Sx != SyorSx ne Sy

- Is one greater than another
Sx > SyorsSx gt Sy
Sx >= Syor$x ge Sy

- Also < (1t)and <= (le)

Comparison Examples

62 > 42 # true
'0' == (3 * 2) - 6 # true
'apple' gt 'banana' # false
'apple' == 'banana' # true(!)
1 + == '3 bears' # true

Boolean Operators

Combine two or more conditional
expressions 1nto one

EXPR 1 and EXPR 2
true if both EXPR 1 and EXPR 2 are true

EXPR 1 or EXPR 2
true if either EXPR 1 or - EXPR 2 are true

alternative syntax s& for and and | | for or

Short-Circuit Operators

* EXPR 1 or EXPR 2

Only need to evaluate EXPR 2 if EXPR 1
evaluates as false

* We can use this to make code easier to
follow
open FILE, 'something.dat'
or die "Can't open file: $!";

* @ARGV == 2 or print Susage msg;

* 1f - our first conditional
* if (EXPR) { BLOCK }
* Only executes BLOCK 1f EXPR 1s true

if (Sname eq 'Doctor') {
regenerate () ;

J

if ... else ...

* if ... else ... - an extended 1f
if (EXPR) { BLOCKl } else { BLOCK2)}

* If EXPR 1s true, execute BLOCKI,
otherwise execute BLOCK?2

* if (Sname eqg 'Doctor') {
regenerate () ;
} else |
die "Game over!\n";

J

if ... elsif ... else ...

°* 1f ...elsif ... else ... - even more control
if (EXPR1) { BLOCKI }
elsif (EXPR2) { BLOCK2 }
else { BLOCK3 }

* [f EXPRI 1s true, execute BLOCK1
else 1if EXPR2 1s true, execute BLOCK?2
otherwise execute BLOCK3

if ... elsif ... else ...

* An example

if (Sname eq 'Doctor') {
regenerate () ;

} elsif (Stardis location

eq Shere) {

escape () s

} else {
die "Game over!\n";

J

while

* while - repeat the same code
while (EXPR) { BLOCK }

* Repeat BLOCK while EXPR 1s true

while ($dalek prisoners) {
print "Ex-ter-min-ate\n";
Sdalek prisoners--;

J

until

* until - the opposite of while
until (EXPR) { BLOCK }

* Execute BLOCK until EXPR 1is true

until ($regenerations == 12) {
print "Regenerating\n";
regenerate () ;
Sregenerations++;

J

for

* for - more complex loops
for (INIT; EXPR; INCR) { BLOCK }

* Like C
* Execute INIT
If EXPR 1s false, exit loop, otherwise

execute BLOCK, execute INCR and retest
EXPR

for

* An example
for ($i = 1; S1i <= 10; Si++) {
print "$i squared is ", $i * $1i,
1] \ n 1] :

}
* Used surprisingly rarely

foreach

* foreach - simpler looping over lists
foreach VAR (LIST) { BLOCK }

* For each element of LIST, set VAR to

equal the element and execute BLOCK
foreach Si (1 .. 10) {
print "S$i squared is ",
Si * $i, "\n";

foreach

* Another example

my smonths = (Jan => 31, Feb => 28,
Mar => 31, Apr => 30,
May => 31, Jun => 30,

) ;
foreach (keys smonths) {
print "$ has Smonths{$ } days\n";
}

Using while Loops

* Taking input from STDIN

* while (<STDIN>) {
print;

J

* This 1s the same as
while (defined (S = <STDIN>)) {
print $;
}

Breaking Out of Loops

next - jump to next iteration of loop
* last - jump out of loop

redo - jump to start of same iteration of
loop

Open Source Consultancy, Development & Training

Subroutines

* Self-contained "mini-programs' within
your program

* Subroutines have a name and a block of
code

* sub NAME ({
BLOCK

Subroutine Example

* Simple subroutine example
sub exterminate {
print "Ex-Ter-Min-Ate!!\n";
Stimelords-—-;

J

Calling a Subroutine

&slavy;
slay ()
slay;

last one only works 1f function has been
predeclared

Subroutine Arguments

* Functions become far more useful if you

can pass arguments to them
exterminate ('The Doctor');

* Arguments end up in the e array within
the function
sub exterminate {
my ($name) = @ ;
print "Ex-Ter-Min-Ate Sname\n";
Stimelords—-;

Open Source Consultancy, Development & Training

Multiple Arguments

* As @ 1san array 1t can contain multiple

arguments
* sub exterminate {
foreach (@) {

print "Ex-Ter-Min-Ate S \n";
Stimelords—-—;

J

Calling Subroutines

* A subtle difference between smy sub and
my sub ()

* ¢my sub passes on the contents of @ to

the called subroutine

sub first { &second };

sub second { print @ };
first('some', 'random', 'data');

By Value or Reference

* Passing by value passes the value of the
variable into the subroutine. Changing the
argument doesn't alter the external variab]

* Passing by value passes the actual variab.
Changing the argument alters the external
value

* Perl allows you to choose

1C
C.

By Value or Reference

* Simulating pass by value
my (Sargl, Sarg2) = @ ;
Updating Sargl and Sarg2 doesn’t effect
anything outside the subroutine

* Simulating pass by reference
Updating the contents of @ updates the

external values
S [0] = '"whatever';

Returning Values

* Use return to return a value from a

subroutine
sub exterminate {
if (rand > .25) {
print "Ex-Ter-Min-Ate $ [0]\n";
Stimelords—-;
return 1;
} else {
return;

Open Source Consultancy, Development & Training

Returning a List

* Returning a list from a subroutine

sub exterminate {
my (@exterminated;
foreach (@) {
1f (rand > .25) {
print "Ex-Ter-Min-Ate $ \n";
Stimelords—--;
push (@exterminated, $;

}
}

return @exterminated;

}

Open Source Consultancy, Development & Training

Open Source Consultancy, Development & Training

Regular Expressions

Patterns that match strings
A bit like wild-cards

A "mini-language" within Perl (Alien
DNA)

The key to Perl's text processing power
Sometimes overused!
Documented in perldoc perlre

Match Operator

m/PATTERN/ - the match operator
works on $ by default

1n scalar context returns true 1f the match
succeeds

in list context returns list of "captured" text
m 1s optional 1f you use / characters
with m you can use any delimiters

Match Examples

* m/PATTERN/ examples

* while (KFILE>) {
print if /foo/;
print if /bar/i;
print if m|http://];
}

Substitutions

S/PATTERN/REPLACEMENTY/ - the
substitution operator

works on $ by default

1n scalar context returns true if substitution
succeeds

in list context returns number of
replacements

can choose any delimiter

Substitution Examples

* S'PATTERN/REPLACEMENT/ examples

* while (<KFILE>) {
s/teh/the/qgi;
s/freind/friend/gi;
s/sholud/should/gi;
print;

J

Binding Operator

* If we wantn// or s/// to work on
something other than s then we need to
use the binding operator

* Sname =~ s/Dave/David/;

Metacharacters

Matching something other than literal text
~ - matches start of string
S - matches end of string

. - matches any character (except \n)
\ s - matches a whitespace character
\ S - matches a non-whitespace character

More Metacharacters

\d - matc
\ D - matc]
\w - matc]
\W - matc]
\b - matc

nes any digit

nes any non-digit

nes any "word" character

nes any "mon-word" character
nes a word boundary

\ B - matc]
boundary

nes anywhere except a word

Metacharacter Examples

* while (KFILE>) {
print 1f m| http]|;
print if /\bperl\b/;
print if /\S/;
print 1f /\S\d\.\d\d/;

Quantifiers

Specify the number of occurrences
? - match zero or one

* - match zero or more

+ - match one or more

{n} - match exactly n

{n, } - match n or more

{n,m} - match between n and m

Open Source Consultancy, Development & Training

Quantifier Examples

* while (KFILE>) {
print if /whiske?y/i;
print if /so+n/;
print if /\d*\.\d+/;
print 1f /\bA\w{3}\b/;
)

Character Classes

* Define a class of characters to match
* /laeiou]/ # match any vowel

* Use - to define a contiguous set

* /[A-Z]/ # match upper case
letters

* Use ™ to match mverse set
* /["A-Za-z] # match non-letters

Alternation

* Use | to match one of a set of options
* /rose|donna|martha/i;

* Use parentheses for grouping

* /"~ (rose|donna|martha) $/1;

Capturing Matches

* Parentheses are also used to capture parts
of the matched string

* The captured parts are in $1, $2, etc...
while (<FILE>) ({
if (/7 (\w+) \s+ (\w+) /) |
print "The first word was $1\n";
print "The second word was $2";
}
}

Returning Captures

* Captured values are also returned if the
match operator 1s used 1n list context

* my @nums = Stext =~ /(\d+)/g;
print "I found these integers:\n";
print "@nums\n";

Open Source Consultancy, Development & Training

Perl Websites

* Perl Home Page
- http://www.perl.org
* CPAN
- http://www.cpan.org
- http://search.cpan.org
* Perl Mongers (Perl User Groups)

- http://www.pm.org
- http://london.pm.org

Perl Websites

use perl; (Perl news site)
- http://use.perl.org

* Perl Monks (Perl help and advice)

- http://www.perlmonks.org

* Perl documentation online
- http://perldoc.perl.org

Perl Conferences

* The Perl Conference
(part of the Open Source Convention)

- July, 21-25 2008 Portland, Oregon
- http://conferences.oreilly.com

* Yet Another Perl Conference
- 2008 Copenhagen, Denmark
- http://www.yapceurope.org

Perl Conferences
* Other YAPCs

- Chicago, Illino1s
- Brazil
- Tokyo

* OSDC

- Israel
- Australia

Perl Workshops

* One-day grassroots conferences
- Like this one

* Germany, Israel, Pittsburgh, Nordic,
Netherlands, France, Belgium, Russia,
Minnesota, Austria

* Perl Review Calendar

- www.theperlreview.com/community calendar

Perl Mailing Lists

* See http://lists.perl.org for full details
- Perl Mongers (social discussion)
- CGI
- DBI
- XML
- Beginners
- Advocacy
- Fun with Perl

Perl Books

* Books for learning Perl

- Learning Perl (4th ed - July 2005)
Schwartz, Phoenix & foy (O'Reilly)

- Intermediate Perl
Schwartz, foy & Phoenix (O'Reilly)

- Beginning Perl
Cozens (Wrox)
http://www.perl.org/books/beginning-perl/

Perl Books

* Books you should have access to

- Programming Perl (3rd edition)
Wall, Christiansen & Orwant (O'Reilly)

- The Perl Cookbook (2" edition)
Christiansen & Torkington (O'Reilly)

- Perl Best Practices
Conway (O'Reilly)

= Perl 1n a Nutshell
Siever, Spainhour & Patwardhan (O'Reilly)

Perl Books

* Books you should probably look at

- Mastering Regular Expressions
Friedl (O'Reilly)

- Data Munging with Perl
Cross (Manning)

- Advanced Perl Programming
Cozens (O'Reilly)

- Perl Medic
Scott (Addison Wesley)

Perl Books

* Specialised Perl books

- Object Oriented Perl
Conway (Manning)

- Programming the Perl DBI
Descartes & Bunce (O'Reilly)

- Writing CGI Applications with Perl
Meltzer & Michelski (Addison Wesley)

- Practical mod perl
Bekman & Cholet (O'Reilly)

Perl Magazines

* The Perl Review

- http://www.theperlreview.com

That's All Folks

* Questions
* Lunchtime

	页 1
	页 2
	页 3
	页 4
	页 5
	页 6
	页 7
	页 8
	页 9
	页 10
	页 11
	页 12
	页 13
	页 14
	页 15
	页 16
	页 17
	页 18
	页 19
	页 20
	页 21
	页 22
	页 23
	页 24
	页 25
	页 26
	页 27
	页 28
	页 29
	页 30
	页 31
	页 32
	页 33
	页 34
	页 35
	页 36
	页 37
	页 38
	页 39
	页 40
	页 41
	页 42
	页 43
	页 44
	页 45
	页 46
	页 47
	页 48
	页 49
	页 50
	页 51
	页 52
	页 53
	页 54
	页 55
	页 56
	页 57
	页 58
	页 59
	页 60
	页 61
	页 62
	页 63
	页 64
	页 65
	页 66
	页 67
	页 68
	页 69
	页 70
	页 71
	页 72
	页 73
	页 74
	页 75
	页 76
	页 77
	页 78
	页 79
	页 80
	页 81
	页 82
	页 83
	页 84
	页 85
	页 86
	页 87
	页 88
	页 89
	页 90
	页 91
	页 92
	页 93
	页 94
	页 95
	页 96
	页 97
	页 98
	页 99
	页 100
	页 101
	页 102
	页 103
	页 104
	页 105
	页 106
	页 107
	页 108
	页 109
	页 110
	页 111
	页 112
	页 113
	页 114
	页 115
	页 116
	页 117
	页 118
	页 119
	页 120

