
London Perl
Workshop
1st December
2007

1

Beginners Perl

An Introduction to Perl Programming

Dave Cross

Magnum Solutions Ltd

dave@mag-sol.com

London Perl
Workshop
1st December
2007

2

What We Will Cover

 What is Perl?
 Creating and running a Perl program
 Perl variables
 Operators and Functions

London Perl
Workshop
1st December
2007

3

What We Will Cover
 Conditional Constructs
 Subroutines
 Regular Expressions
 Further Information

London Perl
Workshop
1st December
2007

4

What is Perl?

London Perl
Workshop
1st December
2007

5

Perl's Name

 Practical Extraction and Reporting
Language

 Pathologically Eclectic Rubbish Lister
 "Perl" is the language

"perl" is the compiler
 Never "PERL"

London Perl
Workshop
1st December
2007

6

Typical uses of Perl

 Text processing
 System administration tasks
 CGI and web programming
 Database interaction
 Other Internet programming

London Perl
Workshop
1st December
2007

7

Less typical uses of Perl
Human Genome Project
NASA

London Perl
Workshop
1st December
2007

8

What is Perl Like?

 General purpose programming language
 Free (open source)
 Fast
 Flexible
 Secure
 Dynamic

London Perl
Workshop
1st December
2007

9

The Perl Philosophy

 There's more than one way to do it
 Three virtues of a programmer

 Laziness
 Impatience
 Hubris

 Share and enjoy!

London Perl
Workshop
1st December
2007

10

Creating and Running a
Perl Program

London Perl
Workshop
1st December
2007

11

Creating a Perl Program

 Our first Perl program
print "Hello world\n";

 Put this in a file called hello.pl

London Perl
Workshop
1st December
2007

12

Running a Perl Program

 Running a Perl program from the command
line

 perl hello.pl

London Perl
Workshop
1st December
2007

13

Running a Perl Program

 The "shebang" line (Unix, not Perl)
#!/usr/bin/perl

 Make program executable
chmod +x hello.pl

 Run from command line
./hello.pl

London Perl
Workshop
1st December
2007

14

Perl Comments

 Add comments to yout code
 Start with a hash (#)
 Continue to end of line
 # This is a hello world program
print "Hello, world!\n"; # print

London Perl
Workshop
1st December
2007

15

Command Line Options

 Many options to control execution of the
program

 For example, -w turns on warnings
 Use on command line
perl -w hello.pl

 Or on shebang line
#!/usr/bin/perl -w

London Perl
Workshop
1st December
2007

16

Perl variables

London Perl
Workshop
1st December
2007

17

What is a Variable?

 A place where we can store data
 A variable needs a name to

− retrieve the data stored in it

− put new data in it

London Perl
Workshop
1st December
2007

18

Variable Names

 Contain alphanumeric characters and
underscores

 User variable names may not start with
numbers

 Variable names are preceded by a
punctuation mark indicating the type of
data

London Perl
Workshop
1st December
2007

19

Types of Perl Variable

 Different types of variables start with a
different symbol

− Scalar variables start with $
− Array variables start with @
− Hash variables start with %

 More on these types soon

London Perl
Workshop
1st December
2007

20

Declaring Variables

 You don't need to declare variables in Perl
 But it's a very good idea

− typos

− scoping

 Using the strict pragma
use strict;
my $var;

London Perl
Workshop
1st December
2007

21

Scalar Variables

 Store a single item of data
 my $name = "Dave";
 my $whoami = 'Just Another Perl
Hacker';

 my $meaning_of_life = 42;
 my $number_less_than_1 = 0.000001;
 my $very_large_number = 3.27e17;
 # 3.27 times 10 to the power of 17

London Perl
Workshop
1st December
2007

22

Type Conversions

 Perl converts between strings and numbers
whenever necessary

 # add int to a floating point number
my $sum = $meaning_of_life +
 $number_less_than_1;

 # putting the number in a string
print "$name says, 'The meaning of
life is $sum.'\n";

London Perl
Workshop
1st December
2007

23

Quoting Strings

 Single quotes don't expand variables or
escape sequences
my $price = '$9.95';

 Double quotes do
my $invline = "24 widgets @ $price
each\n";

 Use a backslash to escape special
characters in double quoted strings
print "He said \"The price is \$300\"";

London Perl
Workshop
1st December
2007

24

Better Quote Marks

 This can look ugly
 print "He said \"The price is \$300\"";

 This is a tidier alternative
 print qq(He said "The price is \$300");

 Also works for single quotes
 print q(He said "That's too expensive");

London Perl
Workshop
1st December
2007

25

Undefined Values
 A scalar variable that hasn't had data put into

it will contain the special value “undef”
 Test for it with “defined()” function
 if (defined($my_var)) { ... }
 You can assign undef yourself
 $var = undef
 undef $var

London Perl
Workshop
1st December
2007

26

Array Variables

 Arrays contain an ordered list of scalar
values

 my @fruit = ('apples', 'oranges',
 'guavas',
 'passionfruit', 'grapes');

 my @magic_numbers = (23, 42, 69);
 my @random_scalars = ('mumble', 123.45,
 'dave cross',
 -300, $name);

London Perl
Workshop
1st December
2007

27

Array Elements

 Accessing individual elements of an array
 print $fruits[0];
prints "apples"

 print $random_scalars[2];
prints "dave cross"

 Note use of $ as individual element of an
array is a scalar

London Perl
Workshop
1st December
2007

28

Array Slices

 Returns a list of elements from an array
 print @fruits[0,2,4];
prints "apples", "guavas",
"grapes"

 print @fruits[1 .. 3];
prints "oranges", "guavas",
"passionfruit"

 Note use of @ as we are accessing more
than one element of the array

London Perl
Workshop
1st December
2007

29

Setting Array Values

 $array[4] = 'something';
$array[400] = 'something else';

 Also with slices
 @array[4, 7 .. 9] = ('four', 'seven',
 'eight', 'nine');

 @array[1, 2] = @array[2, 1];

 Doesn't need to be an array!
– ($x, $y) = ($y, $x);

London Perl
Workshop
1st December
2007

30

Array Size

 $#array is the index of the last element
in @array

 Therefore $#array + 1 is the number of
elements

 $count = @array;
or $count = scalar @array
does the same thing and is easier to
understand

London Perl
Workshop
1st December
2007

31

Hash Variables

 Hashes implement “look-up tables” or
“dictionaries”

 Initialised with a list
%french = ('one', 'un', 'two', 'deux',
 'three', 'trois');

 "fat comma" (=>) is easier to understand
%german = (one => 'ein',
 two => 'zwei',
 three => 'drei');

London Perl
Workshop
1st December
2007

32

Accessing Hash Values

 $three = $french{three};
 print $german{two};
 As with arrays, notice the use of $ to

indicate that we're accessing a single value

London Perl
Workshop
1st December
2007

33

Hash Slices

 Just like array slices
 Returns a list of elements from a hash
print @french{'one','two','three'};
prints "un", "deux" & "trois"

 Again, note use of @ as we are accessing
more than one value from the hash

London Perl
Workshop
1st December
2007

34

Setting Hash Values

 $hash{foo} = 'something';
 $hash{bar} = 'something else';
 Also with slices
 @hash{'foo', 'bar'} =
 ('something', 'else');

 @hash{'foo', 'bar'} =
 @hash{'bar', 'foo'};

London Perl
Workshop
1st December
2007

35

More About Hashes

 Hashes are not sorted
 There is no equivalent to $#array
 print %hash is unhelpful
 We'll see ways round these restrictions later

London Perl
Workshop
1st December
2007

36

Special Perl Variables

 Perl has many special variables
 Many of them have punctuation marks as

names
 Others have names in ALL_CAPS
 They are documented in perlvar

London Perl
Workshop
1st December
2007

37

The Default Variable

 Many Perl operations either set $_ or use its
value if no other is given
print; # prints the value of $_

 If a piece of Perl code seems to be missing
a variable, then it's probably using $_

London Perl
Workshop
1st December
2007

38

Using $_
 while (<FILE>) {
 if (/regex/) {
 print;
 }
}

 Three uses of $_

London Perl
Workshop
1st December
2007

39

A Special Array

 @ARGV
 Contains your program's command line

arguments
 perl printargs.pl foo bar baz

 my $num = @ARGV;
print "$num arguments: @ARGV\n";

London Perl
Workshop
1st December
2007

40

A Special Hash

 %ENV
 Contains the environment variables that

your script has access to.
 Keys are the variable names

Values are the… well… values!
 print $ENV{PATH};

London Perl
Workshop
1st December
2007

41

Operators and Functions

London Perl
Workshop
1st December
2007

42

Operators and Functions

 What are operators and functions?
− "Things" that do "stuff"
− Routines built into Perl to manipulate data
− Other languages have a strong distinction

between operators and functions - in Perl that
distinction can be a bit blurred

− See perlop and perlfunc

London Perl
Workshop
1st December
2007

43

Arithmetic Operators

 Standard arithmetic operations
add (+), subtract (-), multiply (*), divide (/)

 Less standard operations
modulus (%), exponentiation (**)

 $speed = $distance / $time;
$vol = $length * $breadth * $height;
$area = $pi * ($radius ** 2);
$odd = $number % 2;

London Perl
Workshop
1st December
2007

44

Shortcut Operators

 Often need to do things like
$total = $total + $amount;

 Can be abbreviated to
$total += $amount;

 Even shorter
$x++; # same as $x += 1 or $x = $x + 1
$y--; # same as $y -= 1 or $y = $y - 1

 Subtle difference between $x++ and ++$x

London Perl
Workshop
1st December
2007

45

String Operators

 Concaternation (.)
$name = $firstname . ' ' . $surname;

 Repetition (x)
$line = '-' x 80;
$police = 'hello ' x 3;

 Shortcut versions available
$page .= $line; # $page = $page . $line
$thing x= $i; # $thing = $thing x $i

London Perl
Workshop
1st December
2007

46

File Test Operators

 Check various attributes of a file
-e $file does the file exist
-r $file is the file readable
-w $file is the file writeable
-d $file is the file a directory
-f $file is the file a normal file
-T $file is a text file
-B $file is a binary file

London Perl
Workshop
1st December
2007

47

Functions

 Have longer names than operators
 Can take more arguments than operators
 Arguments follow the function name
 See perlfunc for a complete list of Perl's

built-in functions

London Perl
Workshop
1st December
2007

48

Function Return Values

 Functions can return scalars or lists (or
nothing)

 $age = 29.75;
$years = int($age);

 @list = ('a', 'random',
 'collection', 'of',
 'words');
@sorted = sort(@list);
a collection of random words

London Perl
Workshop
1st December
2007

49

String Functions

 length returns the length of a string
$len = length $a_string;

 uc and lc return upper and lower case
versions of a string
$string = 'MiXeD CaSe';
print "$string\n", uc $string, "\n",
 lc $string;

 See also ucfirst and lcfirst

London Perl
Workshop
1st December
2007

50

More String Functions

 chop removes the last character from a
string and returns it
$word = 'word';
$letter = chop $word;

 chomp removes the last character only if it
is a newline and returns true or false
appropriately

London Perl
Workshop
1st December
2007

51

Substrings

 substr returns substrings from a string
$string = 'Hello world';
print substr($string, 0, 5);
 # prints 'Hello'

 Unlike many other languages you can
assign to a substring
substr($string, 0, 5) = 'Greetings';
print $string;
prints 'Greetings world'

London Perl
Workshop
1st December
2007

52

Numeric Functions

 abs returns the absolute value
 cos, sin standard trigonometric functions
 exp exponentiation using e
 log logarithm to base e
 rand returns a random number
 sqrt returns the square root

London Perl
Workshop
1st December
2007

53

Array Manipulation

 push adds a new element to the end of an
array
push @array, $value;

 pop removes and returns the last element in
an array
$value = pop @array;

 shift and unshift do the same for the
start of an array

London Perl
Workshop
1st December
2007

54

Array Manipulation

 sort returns a sorted list (it does not sort
the list in place)
@sorted = sort @array;

 sort does a lot more besides, see the docs
(perldoc -f sort)

 reverse returns a reversed list
@reverse = reverse @array;

London Perl
Workshop
1st December
2007

55

Arrays and Strings

 join takes an array and returns a string
@array = (1 .. 5);
$string = join ' ', @array;
$string is '1 2 3 4 5'

 split takes a string and converts it into an
array
$string = '1~2~3~4~5';
@array = split(/~/, $string);
@array is (1, 2, 3, 4, 5)

London Perl
Workshop
1st December
2007

56

Hash Functions

 delete removes a key/value pair from a
hash

 exists tells you if an element exists in a
hash

 keys returns a list of all the keys in a hash
 values returns a list of all the values in a

hash

London Perl
Workshop
1st December
2007

57

File Operations

 open opens a file and associates it with a
filehandle
open(FILE, 'in.dat');

 You can then read the file with <FILE>
$line = <FILE>; # one line
@lines = <FILE>; # all lines

 Finally, close the file with close
close(FILE);

London Perl
Workshop
1st December
2007

58

Other File Functions

 read to read a fixed number of bytes into a
buffer
$bytes = read(FILE, $buffer, 1024);

 seek to move to a random postion in a file
seek(FILE, 0, 0);

 tell to get current file position
$where = tell FILE;

 truncate to truncate file to given size
truncate FILE, $where;

London Perl
Workshop
1st December
2007

59

Time Functions

 time returns the number of seconds since
Jan 1st 1970

 $now = time;
 localtime converts that into more usable

values
 ($sec, $min, $hour, $mday, $mon,
$year, $wday, $yday, $isdst) =
localtime($now);

London Perl
Workshop
1st December
2007

60

localtime Caveats

 $mon is 0 to 11
 $year is years since 1900
 $wday is 0 (Sun) to 6 (Sat)

London Perl
Workshop
1st December
2007

61

Conditional Constructs

London Perl
Workshop
1st December
2007

62

Conditional Constructs

 Conditional constructs allow us to choose
different routes of execution through the
program

 This makes for far more interesting
programs

 The unit of program execution is a block of
code

 Blocks are delimited with braces { … }

London Perl
Workshop
1st December
2007

63

Conditional Constructs

 Conditional blocks are controlled by the
evaluation of an expression to see if it is
true or false

 But what is truth?

London Perl
Workshop
1st December
2007

64

What is Truth?

 In Perl it's easier to answer the question
"what is false?"

− 0 (the number zero)

− '' (the empty string)

− undef (an undefined value)

− () (an empty list)
 Everything else is true

London Perl
Workshop
1st December
2007

65

Comparison Operators

 Compare two values in some way
− are they equal
$x == $y or $x eq $y
$x != $y or $x ne $y

− Is one greater than another
$x > $y or $x gt $y
$x >= $y or $x ge $y

− Also < (lt) and <= (le)

London Perl
Workshop
1st December
2007

66

Comparison Examples

 62 > 42 # true
 '0' == (3 * 2) - 6 # true
 'apple' gt 'banana' # false
 'apple' == 'banana' # true(!)
 1 + 2 == '3 bears' # true

London Perl
Workshop
1st December
2007

67

Boolean Operators

 Combine two or more conditional
expressions into one

 EXPR_1 and EXPR_2
true if both EXPR_1 and EXPR_2 are true

 EXPR_1 or _EXPR_2
true if either EXPR_1 or _EXPR_2 are true

 alternative syntax && for and and || for or

London Perl
Workshop
1st December
2007

68

Short-Circuit Operators

 EXPR_1 or EXPR_2
Only need to evaluate EXPR_2 if EXPR_1
evaluates as false

 We can use this to make code easier to
follow
open FILE, 'something.dat'
 or die "Can't open file: $!";

 @ARGV == 2 or print $usage_msg;

London Perl
Workshop
1st December
2007

69

if

 if - our first conditional
 if (EXPR) { BLOCK }
 Only executes BLOCK if EXPR is true
if ($name eq 'Doctor') {
 regenerate();
}

London Perl
Workshop
1st December
2007

70

if ... else ...

 if … else ... - an extended if
if (EXPR) { BLOCK1 } else { BLOCK2}

 If EXPR is true, execute BLOCK1,
otherwise execute BLOCK2

 if ($name eq 'Doctor') {
 regenerate();
} else {
 die "Game over!\n";
}

London Perl
Workshop
1st December
2007

71

if ... elsif ... else ...

 if … elsif … else ... - even more control
if (EXPR1) { BLOCK1 }
elsif (EXPR2) { BLOCK2 }
else { BLOCK3 }

 If EXPR1 is true, execute BLOCK1
else if EXPR2 is true, execute BLOCK2
otherwise execute BLOCK3

London Perl
Workshop
1st December
2007

72

if ... elsif ... else ...

 An example
if ($name eq 'Doctor') {
 regenerate();
} elsif ($tardis_location
 eq $here) {
 escape();
} else {
 die "Game over!\n";
}

London Perl
Workshop
1st December
2007

73

while

 while - repeat the same code
while (EXPR) { BLOCK }

 Repeat BLOCK while EXPR is true
while ($dalek_prisoners) {
 print "Ex-ter-min-ate\n";
 $dalek_prisoners--;
}

London Perl
Workshop
1st December
2007

74

until

 until - the opposite of while
until (EXPR) { BLOCK }

 Execute BLOCK until EXPR is true
until ($regenerations == 12) {
 print "Regenerating\n";
 regenerate();
 $regenerations++;
}

London Perl
Workshop
1st December
2007

75

for

 for - more complex loops
for (INIT; EXPR; INCR) { BLOCK }

 Like C
 Execute INIT

If EXPR is false, exit loop, otherwise
execute BLOCK, execute INCR and retest
EXPR

London Perl
Workshop
1st December
2007

76

for

 An example
for ($i = 1; $i <= 10; $i++) {
 print "$i squared is ", $i * $i,
"\n";
}

 Used surprisingly rarely

London Perl
Workshop
1st December
2007

77

foreach

 foreach - simpler looping over lists
foreach VAR (LIST) { BLOCK }

 For each element of LIST, set VAR to
equal the element and execute BLOCK
foreach $i (1 .. 10) {
 print "$i squared is ",
 $i * $i, "\n";
}

London Perl
Workshop
1st December
2007

78

foreach

 Another example
my %months = (Jan => 31, Feb => 28,
 Mar => 31, Apr => 30,
 May => 31, Jun => 30,
 …);
foreach (keys %months) {
 print "$_ has $months{$_} days\n";
}

London Perl
Workshop
1st December
2007

79

Using while Loops

 Taking input from STDIN
 while (<STDIN>) {
 print;
}

 This is the same as
while (defined($_ = <STDIN>)) {
 print $_;
}

London Perl
Workshop
1st December
2007

80

Breaking Out of Loops

 next - jump to next iteration of loop
 last - jump out of loop
 redo - jump to start of same iteration of

loop

London Perl
Workshop
1st December
2007

81

Subroutines

London Perl
Workshop
1st December
2007

82

Subroutines

 Self-contained "mini-programs" within
your program

 Subroutines have a name and a block of
code

 sub NAME {
 BLOCK
}

London Perl
Workshop
1st December
2007

83

Subroutine Example

 Simple subroutine example
sub exterminate {
 print "Ex-Ter-Min-Ate!!\n";
 $timelords--;
}

London Perl
Workshop
1st December
2007

84

Calling a Subroutine

 &slay;
 slay();
 slay;
 last one only works if function has been

predeclared

London Perl
Workshop
1st December
2007

85

Subroutine Arguments

 Functions become far more useful if you
can pass arguments to them
exterminate('The Doctor');

 Arguments end up in the @_ array within
the function
sub exterminate {
 my ($name) = @_;
 print "Ex-Ter-Min-Ate $name\n";
 $timelords--;
}

London Perl
Workshop
1st December
2007

86

Multiple Arguments

 As @_ is an array it can contain multiple
arguments

 sub exterminate {
 foreach (@_) {
 print "Ex-Ter-Min-Ate $_\n";
 $timelords--;
 }
}

London Perl
Workshop
1st December
2007

87

Calling Subroutines

 A subtle difference between &my_sub and
my_sub()

 &my_sub passes on the contents of @_ to
the called subroutine
sub first { &second };
sub second { print @_ };
first('some', 'random', 'data');

London Perl
Workshop
1st December
2007

88

By Value or Reference

 Passing by value passes the value of the
variable into the subroutine. Changing the
argument doesn't alter the external variable

 Passing by value passes the actual variable.
Changing the argument alters the external
value

 Perl allows you to choose

London Perl
Workshop
1st December
2007

89

By Value or Reference

 Simulating pass by value
my ($arg1, $arg2) = @_;
Updating $arg1 and $arg2 doesn’t effect
anything outside the subroutine

 Simulating pass by reference
Updating the contents of @_ updates the
external values
$_[0] = 'whatever';

London Perl
Workshop
1st December
2007

90

Returning Values

 Use return to return a value from a
subroutine
sub exterminate {
 if (rand > .25) {
 print "Ex-Ter-Min-Ate $_[0]\n";
 $timelords--;
 return 1;
 } else {
 return;
 }
}

London Perl
Workshop
1st December
2007

91

Returning a List

 Returning a list from a subroutine
sub exterminate {
 my @exterminated;
 foreach (@_) {
 if (rand > .25) {
 print "Ex-Ter-Min-Ate $_\n";
 $timelords--;
 push @exterminated, $_;
 }
 }
 return @exterminated;
}

London Perl
Workshop
1st December
2007

92

Regular Expressions

London Perl
Workshop
1st December
2007

93

Regular Expressions

 Patterns that match strings
 A bit like wild-cards
 A "mini-language" within Perl (Alien

DNA)
 The key to Perl's text processing power
 Sometimes overused!
 Documented in perldoc perlre

London Perl
Workshop
1st December
2007

94

Match Operator

 m/PATTERN/ - the match operator
 works on $_ by default
 in scalar context returns true if the match

succeeds
 in list context returns list of "captured" text
 m is optional if you use / characters
 with m you can use any delimiters

London Perl
Workshop
1st December
2007

95

Match Examples

 m/PATTERN/ examples
 while (<FILE>) {
 print if /foo/;
 print if /bar/i;
 print if m|http://|;
}

London Perl
Workshop
1st December
2007

96

Substitutions

 s/PATTERN/REPLACEMENT/ - the
substitution operator

 works on $_ by default
 in scalar context returns true if substitution

succeeds
 in list context returns number of

replacements
 can choose any delimiter

London Perl
Workshop
1st December
2007

97

Substitution Examples

 s/PATTERN/REPLACEMENT/ examples
 while (<FILE>) {
 s/teh/the/gi;
 s/freind/friend/gi;
 s/sholud/should/gi;
 print;
}

London Perl
Workshop
1st December
2007

98

Binding Operator

 If we want m// or s/// to work on
something other than $_ then we need to
use the binding operator

 $name =~ s/Dave/David/;

London Perl
Workshop
1st December
2007

99

Metacharacters

 Matching something other than literal text
 ^ - matches start of string
 $ - matches end of string
 . - matches any character (except \n)
 \s - matches a whitespace character
 \S - matches a non-whitespace character

London Perl
Workshop
1st December
2007

100

More Metacharacters

 \d - matches any digit
 \D - matches any non-digit
 \w - matches any "word" character
 \W - matches any "non-word" character
 \b - matches a word boundary
 \B - matches anywhere except a word

boundary

London Perl
Workshop
1st December
2007

101

Metacharacter Examples

 while (<FILE>) {
 print if m|^http|;
 print if /\bperl\b/;
 print if /\S/;
 print if /\$\d\.\d\d/;
}

London Perl
Workshop
1st December
2007

102

Quantifiers

 Specify the number of occurrences
 ? - match zero or one
 * - match zero or more
 + - match one or more
 {n} - match exactly n
 {n,} - match n or more
 {n,m} - match between n and m

London Perl
Workshop
1st December
2007

103

Quantifier Examples

 while (<FILE>) {
 print if /whiske?y/i;
 print if /so+n/;
 print if /\d*\.\d+/;
 print if /\bA\w{3}\b/;
}

London Perl
Workshop
1st December
2007

104

Character Classes

 Define a class of characters to match
 /[aeiou]/ # match any vowel
 Use - to define a contiguous set
 /[A-Z]/ # match upper case
letters

 Use ^ to match inverse set
 /[^A-Za-z] # match non-letters

London Perl
Workshop
1st December
2007

105

Alternation

 Use | to match one of a set of options
 /rose|donna|martha/i;
 Use parentheses for grouping
 /^(rose|donna|martha)$/i;

London Perl
Workshop
1st December
2007

106

Capturing Matches

 Parentheses are also used to capture parts
of the matched string

 The captured parts are in $1, $2, etc…
while (<FILE>) {
 if (/^(\w+)\s+(\w+)/) {
 print "The first word was $1\n";
 print "The second word was $2";
 }
}

London Perl
Workshop
1st December
2007

107

Returning Captures

 Captured values are also returned if the
match operator is used in list context

 my @nums = $text =~ /(\d+)/g;
print "I found these integers:\n";
print "@nums\n";

London Perl
Workshop
1st December
2007

108

More Information

London Perl
Workshop
1st December
2007

109

Perl Websites

 Perl Home Page
− http://www.perl.org

 CPAN
− http://www.cpan.org
− http://search.cpan.org

 Perl Mongers (Perl User Groups)
− http://www.pm.org
− http://london.pm.org

London Perl
Workshop
1st December
2007

110

Perl Websites

• use perl;(Perl news site)
− http://use.perl.org

 Perl Monks (Perl help and advice)
− http://www.perlmonks.org

 Perl documentation online
− http://perldoc.perl.org

London Perl
Workshop
1st December
2007

111

Perl Conferences

 The Perl Conference
(part of the Open Source Convention)

− July, 21-25 2008 Portland, Oregon
− http://conferences.oreilly.com

 Yet Another Perl Conference
− 2008 Copenhagen, Denmark
− http://www.yapceurope.org

London Perl
Workshop
1st December
2007

112

Perl Conferences
 Other YAPCs

− Chicago, Illinois
− Brazil
− Tokyo

 OSDC
− Israel
− Australia

London Perl
Workshop
1st December
2007

113

Perl Workshops
 One-day grassroots conferences

− Like this one
 Germany, Israel, Pittsburgh, Nordic,

Netherlands, France, Belgium, Russia,
Minnesota, Austria

 Perl Review Calendar
− www.theperlreview.com/community_calendar

London Perl
Workshop
1st December
2007

114

Perl Mailing Lists

 See http://lists.perl.org for full details
− Perl Mongers (social discussion)
− CGI
− DBI
− XML
− Beginners
− Advocacy
− Fun with Perl

London Perl
Workshop
1st December
2007

115

Perl Books

 Books for learning Perl
− Learning Perl (4th ed - July 2005)

Schwartz, Phoenix & foy (O'Reilly)
− Intermediate Perl

Schwartz, foy & Phoenix (O'Reilly)
− Beginning Perl

Cozens (Wrox)
http://www.perl.org/books/beginning-perl/

London Perl
Workshop
1st December
2007

116

Perl Books

 Books you should have access to
− Programming Perl (3rd edition)

Wall, Christiansen & Orwant (O'Reilly)
− The Perl Cookbook (2nd edition)

Christiansen & Torkington (O'Reilly)
− Perl Best Practices

Conway (O'Reilly)
− Perl in a Nutshell

Siever, Spainhour & Patwardhan (O'Reilly)

London Perl
Workshop
1st December
2007

117

Perl Books
 Books you should probably look at

− Mastering Regular Expressions
Friedl (O'Reilly)

− Data Munging with Perl
Cross (Manning)

− Advanced Perl Programming
Cozens (O'Reilly)

− Perl Medic
Scott (Addison Wesley)

London Perl
Workshop
1st December
2007

118

Perl Books

 Specialised Perl books
− Object Oriented Perl

Conway (Manning)
− Programming the Perl DBI

Descartes & Bunce (O'Reilly)
− Writing CGI Applications with Perl

Meltzer & Michelski (Addison Wesley)
− Practical mod_perl

Bekman & Cholet (O'Reilly)

London Perl
Workshop
1st December
2007

119

Perl Magazines

 The Perl Review
− http://www.theperlreview.com

London Perl
Workshop
1st December
2007

120

That's All Folks
 Questions
 Lunchtime

	页 1
	页 2
	页 3
	页 4
	页 5
	页 6
	页 7
	页 8
	页 9
	页 10
	页 11
	页 12
	页 13
	页 14
	页 15
	页 16
	页 17
	页 18
	页 19
	页 20
	页 21
	页 22
	页 23
	页 24
	页 25
	页 26
	页 27
	页 28
	页 29
	页 30
	页 31
	页 32
	页 33
	页 34
	页 35
	页 36
	页 37
	页 38
	页 39
	页 40
	页 41
	页 42
	页 43
	页 44
	页 45
	页 46
	页 47
	页 48
	页 49
	页 50
	页 51
	页 52
	页 53
	页 54
	页 55
	页 56
	页 57
	页 58
	页 59
	页 60
	页 61
	页 62
	页 63
	页 64
	页 65
	页 66
	页 67
	页 68
	页 69
	页 70
	页 71
	页 72
	页 73
	页 74
	页 75
	页 76
	页 77
	页 78
	页 79
	页 80
	页 81
	页 82
	页 83
	页 84
	页 85
	页 86
	页 87
	页 88
	页 89
	页 90
	页 91
	页 92
	页 93
	页 94
	页 95
	页 96
	页 97
	页 98
	页 99
	页 100
	页 101
	页 102
	页 103
	页 104
	页 105
	页 106
	页 107
	页 108
	页 109
	页 110
	页 111
	页 112
	页 113
	页 114
	页 115
	页 116
	页 117
	页 118
	页 119
	页 120

