
London Perl
Workshop
1st December
2007

1

Beginners Perl

An Introduction to Perl Programming

Dave Cross

Magnum Solutions Ltd

dave@mag-sol.com

London Perl
Workshop
1st December
2007

2

What We Will Cover

 What is Perl?
 Creating and running a Perl program
 Perl variables
 Operators and Functions

London Perl
Workshop
1st December
2007

3

What We Will Cover
 Conditional Constructs
 Subroutines
 Regular Expressions
 Further Information

London Perl
Workshop
1st December
2007

4

What is Perl?

London Perl
Workshop
1st December
2007

5

Perl's Name

 Practical Extraction and Reporting
Language

 Pathologically Eclectic Rubbish Lister
 "Perl" is the language

"perl" is the compiler
 Never "PERL"

London Perl
Workshop
1st December
2007

6

Typical uses of Perl

 Text processing
 System administration tasks
 CGI and web programming
 Database interaction
 Other Internet programming

London Perl
Workshop
1st December
2007

7

Less typical uses of Perl
Human Genome Project
NASA

London Perl
Workshop
1st December
2007

8

What is Perl Like?

 General purpose programming language
 Free (open source)
 Fast
 Flexible
 Secure
 Dynamic

London Perl
Workshop
1st December
2007

9

The Perl Philosophy

 There's more than one way to do it
 Three virtues of a programmer

 Laziness
 Impatience
 Hubris

 Share and enjoy!

London Perl
Workshop
1st December
2007

10

Creating and Running a
Perl Program

London Perl
Workshop
1st December
2007

11

Creating a Perl Program

 Our first Perl program
print "Hello world\n";

 Put this in a file called hello.pl

London Perl
Workshop
1st December
2007

12

Running a Perl Program

 Running a Perl program from the command
line

 perl hello.pl

London Perl
Workshop
1st December
2007

13

Running a Perl Program

 The "shebang" line (Unix, not Perl)
#!/usr/bin/perl

 Make program executable
chmod +x hello.pl

 Run from command line
./hello.pl

London Perl
Workshop
1st December
2007

14

Perl Comments

 Add comments to yout code
 Start with a hash (#)
 Continue to end of line
 # This is a hello world program
print "Hello, world!\n"; # print

London Perl
Workshop
1st December
2007

15

Command Line Options

 Many options to control execution of the
program

 For example, -w turns on warnings
 Use on command line
perl -w hello.pl

 Or on shebang line
#!/usr/bin/perl -w

London Perl
Workshop
1st December
2007

16

Perl variables

London Perl
Workshop
1st December
2007

17

What is a Variable?

 A place where we can store data
 A variable needs a name to

− retrieve the data stored in it

− put new data in it

London Perl
Workshop
1st December
2007

18

Variable Names

 Contain alphanumeric characters and
underscores

 User variable names may not start with
numbers

 Variable names are preceded by a
punctuation mark indicating the type of
data

London Perl
Workshop
1st December
2007

19

Types of Perl Variable

 Different types of variables start with a
different symbol

− Scalar variables start with $
− Array variables start with @
− Hash variables start with %

 More on these types soon

London Perl
Workshop
1st December
2007

20

Declaring Variables

 You don't need to declare variables in Perl
 But it's a very good idea

− typos

− scoping

 Using the strict pragma
use strict;
my $var;

London Perl
Workshop
1st December
2007

21

Scalar Variables

 Store a single item of data
 my $name = "Dave";
 my $whoami = 'Just Another Perl
Hacker';

 my $meaning_of_life = 42;
 my $number_less_than_1 = 0.000001;
 my $very_large_number = 3.27e17;
 # 3.27 times 10 to the power of 17

London Perl
Workshop
1st December
2007

22

Type Conversions

 Perl converts between strings and numbers
whenever necessary

 # add int to a floating point number
my $sum = $meaning_of_life +
 $number_less_than_1;

 # putting the number in a string
print "$name says, 'The meaning of
life is $sum.'\n";

London Perl
Workshop
1st December
2007

23

Quoting Strings

 Single quotes don't expand variables or
escape sequences
my $price = '$9.95';

 Double quotes do
my $invline = "24 widgets @ $price
each\n";

 Use a backslash to escape special
characters in double quoted strings
print "He said \"The price is \$300\"";

London Perl
Workshop
1st December
2007

24

Better Quote Marks

 This can look ugly
 print "He said \"The price is \$300\"";

 This is a tidier alternative
 print qq(He said "The price is \$300");

 Also works for single quotes
 print q(He said "That's too expensive");

London Perl
Workshop
1st December
2007

25

Undefined Values
 A scalar variable that hasn't had data put into

it will contain the special value “undef”
 Test for it with “defined()” function
 if (defined($my_var)) { ... }
 You can assign undef yourself
 $var = undef
 undef $var

London Perl
Workshop
1st December
2007

26

Array Variables

 Arrays contain an ordered list of scalar
values

 my @fruit = ('apples', 'oranges',
 'guavas',
 'passionfruit', 'grapes');

 my @magic_numbers = (23, 42, 69);
 my @random_scalars = ('mumble', 123.45,
 'dave cross',
 -300, $name);

London Perl
Workshop
1st December
2007

27

Array Elements

 Accessing individual elements of an array
 print $fruits[0];
prints "apples"

 print $random_scalars[2];
prints "dave cross"

 Note use of $ as individual element of an
array is a scalar

London Perl
Workshop
1st December
2007

28

Array Slices

 Returns a list of elements from an array
 print @fruits[0,2,4];
prints "apples", "guavas",
"grapes"

 print @fruits[1 .. 3];
prints "oranges", "guavas",
"passionfruit"

 Note use of @ as we are accessing more
than one element of the array

London Perl
Workshop
1st December
2007

29

Setting Array Values

 $array[4] = 'something';
$array[400] = 'something else';

 Also with slices
 @array[4, 7 .. 9] = ('four', 'seven',
 'eight', 'nine');

 @array[1, 2] = @array[2, 1];

 Doesn't need to be an array!
– ($x, $y) = ($y, $x);

London Perl
Workshop
1st December
2007

30

Array Size

 $#array is the index of the last element
in @array

 Therefore $#array + 1 is the number of
elements

 $count = @array;
or $count = scalar @array
does the same thing and is easier to
understand

London Perl
Workshop
1st December
2007

31

Hash Variables

 Hashes implement “look-up tables” or
“dictionaries”

 Initialised with a list
%french = ('one', 'un', 'two', 'deux',
 'three', 'trois');

 "fat comma" (=>) is easier to understand
%german = (one => 'ein',
 two => 'zwei',
 three => 'drei');

London Perl
Workshop
1st December
2007

32

Accessing Hash Values

 $three = $french{three};
 print $german{two};
 As with arrays, notice the use of $ to

indicate that we're accessing a single value

London Perl
Workshop
1st December
2007

33

Hash Slices

 Just like array slices
 Returns a list of elements from a hash
print @french{'one','two','three'};
prints "un", "deux" & "trois"

 Again, note use of @ as we are accessing
more than one value from the hash

London Perl
Workshop
1st December
2007

34

Setting Hash Values

 $hash{foo} = 'something';
 $hash{bar} = 'something else';
 Also with slices
 @hash{'foo', 'bar'} =
 ('something', 'else');

 @hash{'foo', 'bar'} =
 @hash{'bar', 'foo'};

London Perl
Workshop
1st December
2007

35

More About Hashes

 Hashes are not sorted
 There is no equivalent to $#array
 print %hash is unhelpful
 We'll see ways round these restrictions later

London Perl
Workshop
1st December
2007

36

Special Perl Variables

 Perl has many special variables
 Many of them have punctuation marks as

names
 Others have names in ALL_CAPS
 They are documented in perlvar

London Perl
Workshop
1st December
2007

37

The Default Variable

 Many Perl operations either set $_ or use its
value if no other is given
print; # prints the value of $_

 If a piece of Perl code seems to be missing
a variable, then it's probably using $_

London Perl
Workshop
1st December
2007

38

Using $_
 while (<FILE>) {
 if (/regex/) {
 print;
 }
}

 Three uses of $_

London Perl
Workshop
1st December
2007

39

A Special Array

 @ARGV
 Contains your program's command line

arguments
 perl printargs.pl foo bar baz

 my $num = @ARGV;
print "$num arguments: @ARGV\n";

London Perl
Workshop
1st December
2007

40

A Special Hash

 %ENV
 Contains the environment variables that

your script has access to.
 Keys are the variable names

Values are the… well… values!
 print $ENV{PATH};

London Perl
Workshop
1st December
2007

41

Operators and Functions

London Perl
Workshop
1st December
2007

42

Operators and Functions

 What are operators and functions?
− "Things" that do "stuff"
− Routines built into Perl to manipulate data
− Other languages have a strong distinction

between operators and functions - in Perl that
distinction can be a bit blurred

− See perlop and perlfunc

London Perl
Workshop
1st December
2007

43

Arithmetic Operators

 Standard arithmetic operations
add (+), subtract (-), multiply (*), divide (/)

 Less standard operations
modulus (%), exponentiation (**)

 $speed = $distance / $time;
$vol = $length * $breadth * $height;
$area = $pi * ($radius ** 2);
$odd = $number % 2;

London Perl
Workshop
1st December
2007

44

Shortcut Operators

 Often need to do things like
$total = $total + $amount;

 Can be abbreviated to
$total += $amount;

 Even shorter
$x++; # same as $x += 1 or $x = $x + 1
$y--; # same as $y -= 1 or $y = $y - 1

 Subtle difference between $x++ and ++$x

London Perl
Workshop
1st December
2007

45

String Operators

 Concaternation (.)
$name = $firstname . ' ' . $surname;

 Repetition (x)
$line = '-' x 80;
$police = 'hello ' x 3;

 Shortcut versions available
$page .= $line; # $page = $page . $line
$thing x= $i; # $thing = $thing x $i

London Perl
Workshop
1st December
2007

46

File Test Operators

 Check various attributes of a file
-e $file does the file exist
-r $file is the file readable
-w $file is the file writeable
-d $file is the file a directory
-f $file is the file a normal file
-T $file is a text file
-B $file is a binary file

London Perl
Workshop
1st December
2007

47

Functions

 Have longer names than operators
 Can take more arguments than operators
 Arguments follow the function name
 See perlfunc for a complete list of Perl's

built-in functions

London Perl
Workshop
1st December
2007

48

Function Return Values

 Functions can return scalars or lists (or
nothing)

 $age = 29.75;
$years = int($age);

 @list = ('a', 'random',
 'collection', 'of',
 'words');
@sorted = sort(@list);
a collection of random words

London Perl
Workshop
1st December
2007

49

String Functions

 length returns the length of a string
$len = length $a_string;

 uc and lc return upper and lower case
versions of a string
$string = 'MiXeD CaSe';
print "$string\n", uc $string, "\n",
 lc $string;

 See also ucfirst and lcfirst

London Perl
Workshop
1st December
2007

50

More String Functions

 chop removes the last character from a
string and returns it
$word = 'word';
$letter = chop $word;

 chomp removes the last character only if it
is a newline and returns true or false
appropriately

London Perl
Workshop
1st December
2007

51

Substrings

 substr returns substrings from a string
$string = 'Hello world';
print substr($string, 0, 5);
 # prints 'Hello'

 Unlike many other languages you can
assign to a substring
substr($string, 0, 5) = 'Greetings';
print $string;
prints 'Greetings world'

London Perl
Workshop
1st December
2007

52

Numeric Functions

 abs returns the absolute value
 cos, sin standard trigonometric functions
 exp exponentiation using e
 log logarithm to base e
 rand returns a random number
 sqrt returns the square root

London Perl
Workshop
1st December
2007

53

Array Manipulation

 push adds a new element to the end of an
array
push @array, $value;

 pop removes and returns the last element in
an array
$value = pop @array;

 shift and unshift do the same for the
start of an array

London Perl
Workshop
1st December
2007

54

Array Manipulation

 sort returns a sorted list (it does not sort
the list in place)
@sorted = sort @array;

 sort does a lot more besides, see the docs
(perldoc -f sort)

 reverse returns a reversed list
@reverse = reverse @array;

London Perl
Workshop
1st December
2007

55

Arrays and Strings

 join takes an array and returns a string
@array = (1 .. 5);
$string = join ' ', @array;
$string is '1 2 3 4 5'

 split takes a string and converts it into an
array
$string = '1~2~3~4~5';
@array = split(/~/, $string);
@array is (1, 2, 3, 4, 5)

London Perl
Workshop
1st December
2007

56

Hash Functions

 delete removes a key/value pair from a
hash

 exists tells you if an element exists in a
hash

 keys returns a list of all the keys in a hash
 values returns a list of all the values in a

hash

London Perl
Workshop
1st December
2007

57

File Operations

 open opens a file and associates it with a
filehandle
open(FILE, 'in.dat');

 You can then read the file with <FILE>
$line = <FILE>; # one line
@lines = <FILE>; # all lines

 Finally, close the file with close
close(FILE);

London Perl
Workshop
1st December
2007

58

Other File Functions

 read to read a fixed number of bytes into a
buffer
$bytes = read(FILE, $buffer, 1024);

 seek to move to a random postion in a file
seek(FILE, 0, 0);

 tell to get current file position
$where = tell FILE;

 truncate to truncate file to given size
truncate FILE, $where;

London Perl
Workshop
1st December
2007

59

Time Functions

 time returns the number of seconds since
Jan 1st 1970

 $now = time;
 localtime converts that into more usable

values
 ($sec, $min, $hour, $mday, $mon,
$year, $wday, $yday, $isdst) =
localtime($now);

London Perl
Workshop
1st December
2007

60

localtime Caveats

 $mon is 0 to 11
 $year is years since 1900
 $wday is 0 (Sun) to 6 (Sat)

London Perl
Workshop
1st December
2007

61

Conditional Constructs

London Perl
Workshop
1st December
2007

62

Conditional Constructs

 Conditional constructs allow us to choose
different routes of execution through the
program

 This makes for far more interesting
programs

 The unit of program execution is a block of
code

 Blocks are delimited with braces { … }

London Perl
Workshop
1st December
2007

63

Conditional Constructs

 Conditional blocks are controlled by the
evaluation of an expression to see if it is
true or false

 But what is truth?

London Perl
Workshop
1st December
2007

64

What is Truth?

 In Perl it's easier to answer the question
"what is false?"

− 0 (the number zero)

− '' (the empty string)

− undef (an undefined value)

− () (an empty list)
 Everything else is true

London Perl
Workshop
1st December
2007

65

Comparison Operators

 Compare two values in some way
− are they equal
$x == $y or $x eq $y
$x != $y or $x ne $y

− Is one greater than another
$x > $y or $x gt $y
$x >= $y or $x ge $y

− Also < (lt) and <= (le)

London Perl
Workshop
1st December
2007

66

Comparison Examples

 62 > 42 # true
 '0' == (3 * 2) - 6 # true
 'apple' gt 'banana' # false
 'apple' == 'banana' # true(!)
 1 + 2 == '3 bears' # true

London Perl
Workshop
1st December
2007

67

Boolean Operators

 Combine two or more conditional
expressions into one

 EXPR_1 and EXPR_2
true if both EXPR_1 and EXPR_2 are true

 EXPR_1 or _EXPR_2
true if either EXPR_1 or _EXPR_2 are true

 alternative syntax && for and and || for or

London Perl
Workshop
1st December
2007

68

Short-Circuit Operators

 EXPR_1 or EXPR_2
Only need to evaluate EXPR_2 if EXPR_1
evaluates as false

 We can use this to make code easier to
follow
open FILE, 'something.dat'
 or die "Can't open file: $!";

 @ARGV == 2 or print $usage_msg;

London Perl
Workshop
1st December
2007

69

if

 if - our first conditional
 if (EXPR) { BLOCK }
 Only executes BLOCK if EXPR is true
if ($name eq 'Doctor') {
 regenerate();
}

London Perl
Workshop
1st December
2007

70

if ... else ...

 if … else ... - an extended if
if (EXPR) { BLOCK1 } else { BLOCK2}

 If EXPR is true, execute BLOCK1,
otherwise execute BLOCK2

 if ($name eq 'Doctor') {
 regenerate();
} else {
 die "Game over!\n";
}

London Perl
Workshop
1st December
2007

71

if ... elsif ... else ...

 if … elsif … else ... - even more control
if (EXPR1) { BLOCK1 }
elsif (EXPR2) { BLOCK2 }
else { BLOCK3 }

 If EXPR1 is true, execute BLOCK1
else if EXPR2 is true, execute BLOCK2
otherwise execute BLOCK3

London Perl
Workshop
1st December
2007

72

if ... elsif ... else ...

 An example
if ($name eq 'Doctor') {
 regenerate();
} elsif ($tardis_location
 eq $here) {
 escape();
} else {
 die "Game over!\n";
}

London Perl
Workshop
1st December
2007

73

while

 while - repeat the same code
while (EXPR) { BLOCK }

 Repeat BLOCK while EXPR is true
while ($dalek_prisoners) {
 print "Ex-ter-min-ate\n";
 $dalek_prisoners--;
}

London Perl
Workshop
1st December
2007

74

until

 until - the opposite of while
until (EXPR) { BLOCK }

 Execute BLOCK until EXPR is true
until ($regenerations == 12) {
 print "Regenerating\n";
 regenerate();
 $regenerations++;
}

London Perl
Workshop
1st December
2007

75

for

 for - more complex loops
for (INIT; EXPR; INCR) { BLOCK }

 Like C
 Execute INIT

If EXPR is false, exit loop, otherwise
execute BLOCK, execute INCR and retest
EXPR

London Perl
Workshop
1st December
2007

76

for

 An example
for ($i = 1; $i <= 10; $i++) {
 print "$i squared is ", $i * $i,
"\n";
}

 Used surprisingly rarely

London Perl
Workshop
1st December
2007

77

foreach

 foreach - simpler looping over lists
foreach VAR (LIST) { BLOCK }

 For each element of LIST, set VAR to
equal the element and execute BLOCK
foreach $i (1 .. 10) {
 print "$i squared is ",
 $i * $i, "\n";
}

London Perl
Workshop
1st December
2007

78

foreach

 Another example
my %months = (Jan => 31, Feb => 28,
 Mar => 31, Apr => 30,
 May => 31, Jun => 30,
 …);
foreach (keys %months) {
 print "$_ has $months{$_} days\n";
}

London Perl
Workshop
1st December
2007

79

Using while Loops

 Taking input from STDIN
 while (<STDIN>) {
 print;
}

 This is the same as
while (defined($_ = <STDIN>)) {
 print $_;
}

London Perl
Workshop
1st December
2007

80

Breaking Out of Loops

 next - jump to next iteration of loop
 last - jump out of loop
 redo - jump to start of same iteration of

loop

London Perl
Workshop
1st December
2007

81

Subroutines

London Perl
Workshop
1st December
2007

82

Subroutines

 Self-contained "mini-programs" within
your program

 Subroutines have a name and a block of
code

 sub NAME {
 BLOCK
}

London Perl
Workshop
1st December
2007

83

Subroutine Example

 Simple subroutine example
sub exterminate {
 print "Ex-Ter-Min-Ate!!\n";
 $timelords--;
}

London Perl
Workshop
1st December
2007

84

Calling a Subroutine

 &slay;
 slay();
 slay;
 last one only works if function has been

predeclared

London Perl
Workshop
1st December
2007

85

Subroutine Arguments

 Functions become far more useful if you
can pass arguments to them
exterminate('The Doctor');

 Arguments end up in the @_ array within
the function
sub exterminate {
 my ($name) = @_;
 print "Ex-Ter-Min-Ate $name\n";
 $timelords--;
}

London Perl
Workshop
1st December
2007

86

Multiple Arguments

 As @_ is an array it can contain multiple
arguments

 sub exterminate {
 foreach (@_) {
 print "Ex-Ter-Min-Ate $_\n";
 $timelords--;
 }
}

London Perl
Workshop
1st December
2007

87

Calling Subroutines

 A subtle difference between &my_sub and
my_sub()

 &my_sub passes on the contents of @_ to
the called subroutine
sub first { &second };
sub second { print @_ };
first('some', 'random', 'data');

London Perl
Workshop
1st December
2007

88

By Value or Reference

 Passing by value passes the value of the
variable into the subroutine. Changing the
argument doesn't alter the external variable

 Passing by value passes the actual variable.
Changing the argument alters the external
value

 Perl allows you to choose

London Perl
Workshop
1st December
2007

89

By Value or Reference

 Simulating pass by value
my ($arg1, $arg2) = @_;
Updating $arg1 and $arg2 doesn’t effect
anything outside the subroutine

 Simulating pass by reference
Updating the contents of @_ updates the
external values
$_[0] = 'whatever';

London Perl
Workshop
1st December
2007

90

Returning Values

 Use return to return a value from a
subroutine
sub exterminate {
 if (rand > .25) {
 print "Ex-Ter-Min-Ate $_[0]\n";
 $timelords--;
 return 1;
 } else {
 return;
 }
}

London Perl
Workshop
1st December
2007

91

Returning a List

 Returning a list from a subroutine
sub exterminate {
 my @exterminated;
 foreach (@_) {
 if (rand > .25) {
 print "Ex-Ter-Min-Ate $_\n";
 $timelords--;
 push @exterminated, $_;
 }
 }
 return @exterminated;
}

London Perl
Workshop
1st December
2007

92

Regular Expressions

London Perl
Workshop
1st December
2007

93

Regular Expressions

 Patterns that match strings
 A bit like wild-cards
 A "mini-language" within Perl (Alien

DNA)
 The key to Perl's text processing power
 Sometimes overused!
 Documented in perldoc perlre

London Perl
Workshop
1st December
2007

94

Match Operator

 m/PATTERN/ - the match operator
 works on $_ by default
 in scalar context returns true if the match

succeeds
 in list context returns list of "captured" text
 m is optional if you use / characters
 with m you can use any delimiters

London Perl
Workshop
1st December
2007

95

Match Examples

 m/PATTERN/ examples
 while (<FILE>) {
 print if /foo/;
 print if /bar/i;
 print if m|http://|;
}

London Perl
Workshop
1st December
2007

96

Substitutions

 s/PATTERN/REPLACEMENT/ - the
substitution operator

 works on $_ by default
 in scalar context returns true if substitution

succeeds
 in list context returns number of

replacements
 can choose any delimiter

London Perl
Workshop
1st December
2007

97

Substitution Examples

 s/PATTERN/REPLACEMENT/ examples
 while (<FILE>) {
 s/teh/the/gi;
 s/freind/friend/gi;
 s/sholud/should/gi;
 print;
}

London Perl
Workshop
1st December
2007

98

Binding Operator

 If we want m// or s/// to work on
something other than $_ then we need to
use the binding operator

 $name =~ s/Dave/David/;

London Perl
Workshop
1st December
2007

99

Metacharacters

 Matching something other than literal text
 ^ - matches start of string
 $ - matches end of string
 . - matches any character (except \n)
 \s - matches a whitespace character
 \S - matches a non-whitespace character

London Perl
Workshop
1st December
2007

100

More Metacharacters

 \d - matches any digit
 \D - matches any non-digit
 \w - matches any "word" character
 \W - matches any "non-word" character
 \b - matches a word boundary
 \B - matches anywhere except a word

boundary

London Perl
Workshop
1st December
2007

101

Metacharacter Examples

 while (<FILE>) {
 print if m|^http|;
 print if /\bperl\b/;
 print if /\S/;
 print if /\$\d\.\d\d/;
}

London Perl
Workshop
1st December
2007

102

Quantifiers

 Specify the number of occurrences
 ? - match zero or one
 * - match zero or more
 + - match one or more
 {n} - match exactly n
 {n,} - match n or more
 {n,m} - match between n and m

London Perl
Workshop
1st December
2007

103

Quantifier Examples

 while (<FILE>) {
 print if /whiske?y/i;
 print if /so+n/;
 print if /\d*\.\d+/;
 print if /\bA\w{3}\b/;
}

London Perl
Workshop
1st December
2007

104

Character Classes

 Define a class of characters to match
 /[aeiou]/ # match any vowel
 Use - to define a contiguous set
 /[A-Z]/ # match upper case
letters

 Use ^ to match inverse set
 /[^A-Za-z] # match non-letters

London Perl
Workshop
1st December
2007

105

Alternation

 Use | to match one of a set of options
 /rose|donna|martha/i;
 Use parentheses for grouping
 /^(rose|donna|martha)$/i;

London Perl
Workshop
1st December
2007

106

Capturing Matches

 Parentheses are also used to capture parts
of the matched string

 The captured parts are in $1, $2, etc…
while (<FILE>) {
 if (/^(\w+)\s+(\w+)/) {
 print "The first word was $1\n";
 print "The second word was $2";
 }
}

London Perl
Workshop
1st December
2007

107

Returning Captures

 Captured values are also returned if the
match operator is used in list context

 my @nums = $text =~ /(\d+)/g;
print "I found these integers:\n";
print "@nums\n";

London Perl
Workshop
1st December
2007

108

More Information

London Perl
Workshop
1st December
2007

109

Perl Websites

 Perl Home Page
− http://www.perl.org

 CPAN
− http://www.cpan.org
− http://search.cpan.org

 Perl Mongers (Perl User Groups)
− http://www.pm.org
− http://london.pm.org

London Perl
Workshop
1st December
2007

110

Perl Websites

• use perl;(Perl news site)
− http://use.perl.org

 Perl Monks (Perl help and advice)
− http://www.perlmonks.org

 Perl documentation online
− http://perldoc.perl.org

London Perl
Workshop
1st December
2007

111

Perl Conferences

 The Perl Conference
(part of the Open Source Convention)

− July, 21-25 2008 Portland, Oregon
− http://conferences.oreilly.com

 Yet Another Perl Conference
− 2008 Copenhagen, Denmark
− http://www.yapceurope.org

London Perl
Workshop
1st December
2007

112

Perl Conferences
 Other YAPCs

− Chicago, Illinois
− Brazil
− Tokyo

 OSDC
− Israel
− Australia

London Perl
Workshop
1st December
2007

113

Perl Workshops
 One-day grassroots conferences

− Like this one
 Germany, Israel, Pittsburgh, Nordic,

Netherlands, France, Belgium, Russia,
Minnesota, Austria

 Perl Review Calendar
− www.theperlreview.com/community_calendar

London Perl
Workshop
1st December
2007

114

Perl Mailing Lists

 See http://lists.perl.org for full details
− Perl Mongers (social discussion)
− CGI
− DBI
− XML
− Beginners
− Advocacy
− Fun with Perl

London Perl
Workshop
1st December
2007

115

Perl Books

 Books for learning Perl
− Learning Perl (4th ed - July 2005)

Schwartz, Phoenix & foy (O'Reilly)
− Intermediate Perl

Schwartz, foy & Phoenix (O'Reilly)
− Beginning Perl

Cozens (Wrox)
http://www.perl.org/books/beginning-perl/

London Perl
Workshop
1st December
2007

116

Perl Books

 Books you should have access to
− Programming Perl (3rd edition)

Wall, Christiansen & Orwant (O'Reilly)
− The Perl Cookbook (2nd edition)

Christiansen & Torkington (O'Reilly)
− Perl Best Practices

Conway (O'Reilly)
− Perl in a Nutshell

Siever, Spainhour & Patwardhan (O'Reilly)

London Perl
Workshop
1st December
2007

117

Perl Books
 Books you should probably look at

− Mastering Regular Expressions
Friedl (O'Reilly)

− Data Munging with Perl
Cross (Manning)

− Advanced Perl Programming
Cozens (O'Reilly)

− Perl Medic
Scott (Addison Wesley)

London Perl
Workshop
1st December
2007

118

Perl Books

 Specialised Perl books
− Object Oriented Perl

Conway (Manning)
− Programming the Perl DBI

Descartes & Bunce (O'Reilly)
− Writing CGI Applications with Perl

Meltzer & Michelski (Addison Wesley)
− Practical mod_perl

Bekman & Cholet (O'Reilly)

London Perl
Workshop
1st December
2007

119

Perl Magazines

 The Perl Review
− http://www.theperlreview.com

London Perl
Workshop
1st December
2007

120

That's All Folks
 Questions
 Lunchtime

	页 1
	页 2
	页 3
	页 4
	页 5
	页 6
	页 7
	页 8
	页 9
	页 10
	页 11
	页 12
	页 13
	页 14
	页 15
	页 16
	页 17
	页 18
	页 19
	页 20
	页 21
	页 22
	页 23
	页 24
	页 25
	页 26
	页 27
	页 28
	页 29
	页 30
	页 31
	页 32
	页 33
	页 34
	页 35
	页 36
	页 37
	页 38
	页 39
	页 40
	页 41
	页 42
	页 43
	页 44
	页 45
	页 46
	页 47
	页 48
	页 49
	页 50
	页 51
	页 52
	页 53
	页 54
	页 55
	页 56
	页 57
	页 58
	页 59
	页 60
	页 61
	页 62
	页 63
	页 64
	页 65
	页 66
	页 67
	页 68
	页 69
	页 70
	页 71
	页 72
	页 73
	页 74
	页 75
	页 76
	页 77
	页 78
	页 79
	页 80
	页 81
	页 82
	页 83
	页 84
	页 85
	页 86
	页 87
	页 88
	页 89
	页 90
	页 91
	页 92
	页 93
	页 94
	页 95
	页 96
	页 97
	页 98
	页 99
	页 100
	页 101
	页 102
	页 103
	页 104
	页 105
	页 106
	页 107
	页 108
	页 109
	页 110
	页 111
	页 112
	页 113
	页 114
	页 115
	页 116
	页 117
	页 118
	页 119
	页 120

