
Education

A Quick Guide to Teaching R Programming to
Computational Biology Students
Stephen J. Eglen*

Cambridge Computational Biology Institute, Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom

Introduction: Why Use R in
Computational Biology?

The name ‘‘R’’ refers to the computa-

tional environment initially created by

Robert Gentleman and Robert Ihaka,

similar in nature to the ‘‘S’’ statistical

environment developed at Bell Laborato-

ries (http://www.r-project.org/about.

html) [1]. It has since been developed

and maintained by a strong team of core

developers (R-core), who are renowned

researchers in computational disciplines. R

has gained wide acceptance as a reliable

and powerful modern computational en-

vironment for statistical computing and

visualisation, and is now used in many

areas of scientific computation. R is free

software, released under the GNU Gen-

eral Public License; this means anyone can

see all its source code, and there are no

restrictive, costly licensing arrangements.

One of the main reasons that computa-

tional biologists use R is the Bioconductor

project (http://www.bioconductor.org),

which is a set of packages for R to analyse

genomic data. These packages have, in

many cases, been provided by researchers

to complement descriptions of algorithms

in journal articles. Many computational

biologists regard R and Bioconductor as

fundamental tools for their research. R is a

modern, functional programming lan-

guage that allows for rapid development

of ideas, together with object-oriented

features for rigorous software develop-

ment. The rich set of inbuilt functions

makes it ideal for high-volume analysis or

statistical simulations, and the packaging

system means that code provided by others

can easily be shared. Finally, it generates

high-quality graphical output so that all

stages of a study, from modelling/analysis

to publication, can be undertaken within

R. For detailed discussion of the merits of

R in computational biology, see [2].

How to Teach R to Students

This brief article is an introduction to

teaching R, based on my experience in

teaching computational biology graduate

students. R is a powerful environment for

teaching many aspects of computational

biology, including functional genomics,

computational neuroscience, dynamical sys-

tems, statistical genetics, and network biol-

ogy. I provide resources and suggestions for

teaching R and describe common difficulties

faced by students when learning R.

Lecture material
Most students starting our master’s

programme have not previously seen R;

at first, we assumed that students would

self-learn R during the course. However,

this proved to be unsatisfactory, as stu-

dents often said that R was too difficult to

learn on their own on top of their assigned

coursework. In response to this problem,

we created an intensive set of lectures and

lab sessions covering both an introduction

to programming in R and a refresher in

statistics (the introductory statistics mate-

rial is not covered here).

Given that students come from different

backgrounds, some with experiences of

programming in other languages and others

without any prior programming experience,

it is difficult to know at exactly which level to

aim a lecture course. Our approach has been

to provide lecture material containing con-

cepts that may not immediately be under-

stood by novice programmers, but will serve

as a reference for them later in the year.

Instead, the lectures contain advanced

material that can challenge students who

have programming experience. Our lecture

notes are available in Text S1. The Biocon-

ductor project also offers useful teaching

material (http://www.bioconductor.org/

workshops). A key aim when writing these

lecture notes was to focus on teaching R as a

general programming language, rather than

to focus on issues specific to computational

biology. Other lecture courses on our

master’s programme provide additional R

material relevant to particular topics in

computational biology.

Assignments/lab sessions
The best way that the students learn a

programming language is by actually using

the language on problem sets. We there-

fore arrange lab sessions during which

students work through introductory mate-

rial on R. After becoming familiar with R,

we then suggest they work on some

problems in computational biology. Good

sources for such problems include [3], as

well as the R guide to accompany [4],

described below. We also suggest that

students read descriptions of various

popular problems and then implement

them in R. These include:

N Sequence alignment. A basic algo-

rithm is concisely described by [5].

N The discrete logistic equation [6].

Students are asked to generate a

bifurcation diagram showing how the

steady state of the logistic equation

varies as a key parameter varies.

N Cellular automata. Conway’s game of

life [7] provides a nice example of

studying cellular automata.

As well as learning about particular

concepts useful in computational biology

(e.g., difference equations, dynamic pro-

gramming), these exercises test students’

abilities in vector and matrix manipula-

tion, looping, conditionals, file input/

output, and plotting.

Citation: Eglen SJ (2009) A Quick Guide to Teaching R Programming to Computational Biology Students. PLoS
Comput Biol 5(8): e1000482. doi:10.1371/journal.pcbi.1000482

Editor: Fran Lewitter, Whitehead Institute, United States of America

Published August 28, 2009

Copyright: � 2009 Eglen. This is an open-access article distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

Funding: No specific grant was needed for the work in this paper; the paper summarises work performed as
part of my regular teaching duties. The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Competing Interests: The author has declared that no competing interests exist.

* E-mail: S.J.Eglen@damtp.cam.ac.uk

PLoS Computational Biology | www.ploscompbiol.org 1 August 2009 | Volume 5 | Issue 8 | e1000482

Using R for generating graphs
R generates high-quality graphical out-

put. It is worth providing simple examples

for generating graphs that can be used as

templates (as given in the lecture notes) for

their work. Students often fail to realise the

difference between vector and bitmap

formats, and this is worth discussing in

class to suggest they generate graphs using

either PDF or Postscript devices, rather

than bitmap formats. R currently has two

systems for generating graphs: ‘‘base’’ and

‘‘grid’’. The base system is much simpler

and easier to use, and so we recommend

students learn this system (and most

introductory books and resources also use

base graphics). However, students should

be made aware of the grid package, which

allows for much more flexibility over

generating graphics. In particular, the

lattice package [8] uses the grid package

to allow the user to quickly generate

sophisticated and flexible graphics.

Reproducible research
The idea of reproducible research is

quite simple: to provide not only a brief

description of, e.g., how some data has

been analysed, but also to provide the

code and data to allow someone else to

recreate exactly the same sequence of steps

[9]. R provides infrastructure for this in

the form of Sweave documents. Sweave

documents contain R code surrounded by

documentation written in either LaTeX,

HTML, or OpenOffice Writer. The

document is processed to extract and run

the R code; output (either textual or

graphical) is then inserted back into the

document which is then typeset. An

example of this is shown in Supporting

Information files Text S2 and Text S3

(estimating the value of p). Students should

be taught about the idea of reproducible

research, and the idea should be rein-

forced by asking them to submit their

coursework in the form of Sweave docu-

ments. Reproducible research also encour-

ages students to run their code in batch

mode (whereas most students initially

prefer working interactively with R). As

students need to know LaTeX to write

Sweave documents, we also provide a

separate lab session on LaTeX. Larger

pieces of reproducible research are likely

to be released in an R package (containing

both data and code), but teaching students

how to build packages is beyond the scope

of our current course. Writing Sweave

documents takes much longer than writing

R scripts, but it leads to self-documenting

work that is likely to be understandable by

many researchers long after it has been

written.

Textbooks
The R website currently lists over 80

books, together with short descriptions

that may help the reader decide which

books to select (http://www.r-project.org/

doc/bib/R-books.html). Here I give a

short, non-exhaustive list of books that I

recommend to students to complement

lecture notes and to show applications of R

in computational biology. Some of the

books are quite advanced and are likely to

be useful for students only after they have

gained sufficient experience. I also take

these books to lab sessions so that students

can see which book would be most useful

for them.

For a general introduction to R, Intro-

ductory Statistics with R [10] provides a nice

balance of introducing R and showing its

application to classical statistical testing;

Introduction to Probability with R [11] goes

further into aspects of probability. A First

Course in Statistical Programming with R [12]

introduces R as a programming language;

those already familiar with programming

may wish to consult S Programming [13].

Finally, for students wishing to explore the

graphing facilities of R, R Graphics [14] is

recommended.

Several texts focus on aspects of com-

putational biology. First, the introductory

text on Computational Genome Analysis [3]

provides worked examples in R through-

out the book. Stochastic Modelling for Systems

Biology [15] uses R to demonstrate model-

ling in systems biology. An advanced book

for those already familiar with R is R

Programming for Bioinformatics [16]. Finally, a

general text for biological modelling is

Dynamical Models in Biology [4]. Although

the book does not describe R, the online

supplementary information provides a

comprehensive introduction to R and

shows how to use R to simulate the models

discussed in the book, along with numer-

ous exercises (http://www.cam.cornell.

edu/,dmb/DMBsupplements.html).

Useful web sites
R has numerous online resources that

students should be encouraged to explore.

Here are some additional sites that we

have found useful:

http://www.rseek.org. Powered by Goo-

gle, this site searches numerous online R

resources, including documentation, source

code, and books. It also searches the

numerous email lists hosted by the R

project; R-help in particular is a useful list

for people to learn about R.

http://germain.its.maine.edu/,hiebeler/

comp/matlabR.html. A very useful guide for

students who know Matlab; it provides a

comprehensive list of Matlab functions and

the corresponding functions in R.

http://addictedtor.free.fr/graphiques/.

This site provides a gallery of advanced

graphic examples, along with the R code

used to generate those plots.

Common problems encountered
when learning R

Students with previous programming

experience usually find learning R quite

straightforward. It has a rich set of online

documentation for each function, com-

plete with examples, to help learn the

language. However, there are some com-

mon problems that occur when learning

R, described briefly below, along with

suggestions for helping students.

Syntax errors and getting started. The

syntax of R can be difficult for students to

acquire, and students often report that they

spend many hours debugging simple

problems. We encourage students to ask a

colleague for help, as often these errors are

simple, yet frustrating to spot. We use a wiki

to allow students to post questions or

exchange tips and example code. Further-

more, although R has a rich set of documen-

tation for inbuilt functions, students often

report that it is hard to discover these func-

tions, as they do not know what to search for.

With this in mind, our introductory lecture

notes were written to describe most core R

functions with which we would expect a

student eventually to become familiar during

the year. Of course, it is infeasible to provide

a complete list, especially given the vast

number of numerical routines that come with

R, and for this we suggest using the Rseek

internet search tool, described above.

Lecturers should also give hints as to which

functions might be of use for particular

assignments.

Pre-allocation of variables. In R,

variables do not need to be defined before

use; they are simply created when

required. A common problem with this is

demonstrated in the following code:

npts ,2 100
x ,2 runif(n=npts)
y ,2 0
for (i in 1:npts) {
if (x[i].0.5)
y[i] ,2 1

else
y[i] ,2 0

}
A vector x of 100 random values is

generated from a uniform distribution;

each element of the vector y should be

‘‘one’’ if the corresponding element of x is

greater than 0.5, and ‘‘zero’’ otherwise. A

key problem here is that on line 3, y has

been initialised to be the value zero, which

PLoS Computational Biology | www.ploscompbiol.org 2 August 2009 | Volume 5 | Issue 8 | e1000482

is a vector of length one. Within each cycle

of the loop, the length of y needs to increase

by one, and so R silently reallocates the

vector y to be long enough to store the new

result. The code works, but is inefficient,

especially when looping over many values.

A simple solution is to pre-allocate the

vector when the length of the vector is

known in advance. In this case, we can

change line 3 to read:

y ,2 rep(0, npts)
Vectorization. Many operations in R

process entire vectors at once. For example,

if x and y are vectors of the same length,

then z=x+y will create a vector z, where for

each element i, z[i],2 x[i]+y[i]. This

is called vectorization, and students familiar

with other programming languages, such as

C, often use slow and inefficient for loops to

perform these calculations. It is worth

reminding students at several stages while

they are learning R that they should try to

think about how to vectorize their code.

Sometimes this requires them to learn new

R functions, such as the apply family of

commands. For example, if we wish to

compute the mean of each column of a

matrix mat, rather than writing an explicit

loop over each column, we can do:

x ,2 apply(mat, 2, mean)
The apply family of functions are

powerful, but require careful explanation

of how they work. In particular, it should

be explained that R is a functional

language and hence ‘‘everything is an

object’’, which is why functions, such as

mean above, can be passed as arguments

to other functions.

Continuing the example in the previous

section, at first glance it may not seem

suitable for vectorizing, given the if-then

test operating on each element. However,

R has the function ifelse, which simpli-

fies the threshold example to:

npts ,2 100
x ,2 runif(n=npts)
y ,2 ifelse(x.0.5, 1, 0)
In this case, as well as avoiding the for

loop, the problem about allocating the size

of the resulting vector y has gone.

Vectorized solutions are often shorter,

too, implying that there is less code to

maintain.

Even when students are familiar with

vectorization, a common question asked is

how to recognise which code might benefit

from vectorization. The answer, unfortu-

nately, is that it requires accumulating

experience at applying various tricks. Stu-

dents can be helped by giving them

examples, such as the one in the following

paragraph, and asked to study it so that they

understand exactly how it works. Warnings

should be given, however, that even simple

problems, such as computing the Fibonacci

series, are impossible to vectorize. It is better

to get the code working correctly and then

worry about efficiency later: ‘‘…premature

optimization is the root of all evil (or at least

most of it) in programming… [17]’’ (on the

other hand, even when a correct R program

is optimised, it may still be too slow, in

which case the compute-intensive parts can

be rewritten in C and called from R).
Example vectorization problem. Given

a vector of event times e, write a function to

return the interval between successive events,

e.g., interval[i] ,2 e[i+1]2e[i].

Solution: Given that the vector e and the

result are of different lengths, it may seem

that vectorized solutions are not possible.

However, by using the ‘‘minus indexing’’

notation (e[2j] returns a vector with

everything except element j of e), we can

easily vectorize the problem:

diff1 ,2 function(e) {
Explicit loop
n ,2 length(e)
interval ,2 rep(0, n21) ##

pre-allocate result
for (i in 1:(n21)) {
interval[i] ,2 e[i+1]2e[i]

}
interval

}

diff2 ,2 function(e) {
Vectorized solution
n ,2 length(e)
e[21]2e[2n]
}

x ,2 c(5.9, 10.2, 12.4, 18.8)
all.equal(diff1(x), diff2(x))
Data types. A common concern raised

by students is that they are not sure when to

use the different data types (e.g., list, data

frame, matrix) to store their data or how to

convert from one type to another. Part of the

problem is caused by the flexibility in R for

functions to transparently handle different

data types. Again, such issues normally

resolve themselves by continued exposure to

R, but instructors can help by showing how

the type of an object can be determined and

how objects can be converted from one type

to another. Relationships among data types

should also be highlighted (e.g., a matrix

being a particular kind of vector, and a data

frame being a particular kind of list).

Closing Comments

In this article I have summarised our

experience to date on teaching R. As the last

section has shown, there are several difficul-

ties with learning R, but I believe that they

are fairly minor compared to the benefits in

using such a powerful environment. Learn-

ing R is an ongoing process, and once

students have mastered the basics, they

should be encouraged to explore the wealth

of contributed packages on the Compre-

hensive R Archive Network (CRAN)

(http://cran.r-project.org) and Bioconduc-

tor (http://www.bioconductor.org).

Supporting Information

Text S1 Lecture notes for programming

in R.

Found at: doi:10.1371/journal.pcbi.

1000482.s001 (0.48 MB PDF)

Text S2 Example Sweave document

demonstrating how R code and LaTeX

code can be combined.

Found at: doi:10.1371/journal.pcbi.

1000482.s002 (0.00 MB TXT)

Text S3 PDF output from the example

Sweave document.

Found at: doi:10.1371/journal.pcbi.

1000482.s003 (0.11 MB PDF)

Acknowledgments

Thanks to Jonathan Cairns, Thomas Gurry,

Philip Maybank, Richard Parker, Tom Skelly,

Simon Tavaré, and Quin Wills for feedback.

Thanks also to the R core team of developers

for their ongoing work in maintaining and

developing R.

References

1. R Development Core Team (2009) R: A

Language and Environment for Statistical Com-

puting. Vienna, Austria: R Foundation for

Statistical Computing.

2. Gentleman RC, Carey VJ, Bates DM, Bolstad B,

Dettling M, et al. (2004) Bioconductor: open

software development for computational biology

and bioinformatics. Genome Biology 5: R80.

3. Deonier RC, Tavaré S, Waterman MS (2005)

Computational Genome Analysis: An Introduc-

tion. New York: Springer.

4. Ellner SP, Guckenheimer J (2006) Dynamic

Models in Biology Princeton University Press,

URL http://www.cam.cornell.edu/,dmb/

DMBsupplements.html.

5. Eddy SR (2004) What is dynamic programming?

Nature Biotechnology 22: 909–910.

6. May R (1976) Simple mathematical models with

very complicated dynamics. Nature 261:

459–467.

7. Gardner M (1970) Mathematical games: The

fantastic combinations of John Conway’s new

solitaire game ‘Life’. Scientific American 223:
120–123.

8. Sarkar D (2008) Lattice: Multivariate Data

Visualization with R. New York: Springer.

9. Schwab M, Karrenbach M, Claerbout J (2000)
Making scientific computations reproducible.

Computing in Science and Engineering 2: 61–67.

10. Dalgaard P (2008) Introductory Statistics with R.
New York: Springer, 2nd edition.

11. Baclawski K (2008) Introduction to Probability

with R. Boca Raton, FL: Chapman & Hall/CRC.

PLoS Computational Biology | www.ploscompbiol.org 3 August 2009 | Volume 5 | Issue 8 | e1000482

12. Braun WJ, Murdoch DJ (2007) A First Course in

Statistical Programming with R. Cambridge:
Cambridge University Press.

13. Venables WN, Ripley BD (2000) S Programming.

New York: Springer.

14. Murrell P (2005) R Graphics. Boca Raton, FL:

Chapman & Hall/CRC.
15. Wilkinson DJ (2006) Stochastic Modelling for

Systems Biology. Boca Raton, FL: Chapman &

Hall/CRC.

16. Gentleman R (2008) R Programming for Bioin-

formatics. Boca Raton, FL: Chapman & Hall/
CRC.

17. Knuth DE (1974) Computer programming as an

art. Communications of the ACM 17: 667–673.

PLoS Computational Biology | www.ploscompbiol.org 4 August 2009 | Volume 5 | Issue 8 | e1000482

