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Introduction

Bioinformatics programming skills are

becoming a necessity across many facets of

biology and medicine, owed in part to the

continuing explosion of biological data

aggregation and the complexity and scale

of questions now being addressed through

modern bioinformatics. Although many

are now receiving formal training in

bioinformatics through various university

degree and certificate programs, this

training is often focused strongly on

bioinformatics methodology, leaving many

important and practical aspects of bioin-

formatics to self-education and experience.

The following set of guidelines distill

several key principals of effective bioinfor-

matics programming, which the authors

learned through insights gained across

many years of combined experience de-

veloping popular bioinformatics software

applications and database systems in both

academic and commercial settings [1–6].

Successful adoption of these principals will

serve both beginner and experienced

bioinformaticians alike in career develop-

ment and pursuit of professional and

scientific goals.

The Importance of Building
Your Technology Toolbox

Given the diversity and complex nature

of problems in biology, medicine, and

bioinformatics, it is imperative to be able

to approach each problem with a com-

prehensive knowledge of available compu-

tational tools—so that the best tools can be

selected for the problem at hand. The

most fundamental and versatile tools in

your technology toolbox are programming

languages. While most modern program-

ming languages are capable of any num-

ber of computational feats, some are more

apt for particular tasks than others. For

example, the R language [7] is almost

unparalleled in its statistical computing

capabilities, whereas the Lisp language is

well designed for problems in artificial

intelligence, and Erlang [8] excels in fault-

tolerant and distributed systems. Given the

learning and practice required to become

an effective user of a programming

language, it is provident to not only gain

basic proficiency in a diversity of languag-

es but also to appropriate the time and

energy to gain mastery in at least a single

language. With programming language

mastery comes knowledge and access to

advanced language features and libraries,

more efficient programming, and less time

spent reading manuals and making novice

errors.

While there are many languages that

would be appropriate and effective in

which to seek mastery for bioinformatics,

modern interpreted scripting languages,

such as Perl [9], Python [10], and Ruby

[11], are among the most preferred and

prudent choices [12]. These languages

simplify the programming process by

obviating the need to manage many low-

level details of program execution (e.g.,

memory management), affording the pro-

grammer the ability to focus foremost on

application logic, and to rapidly prototype

programs in an interpreted and easily

extensible environment. Any effort to

choose from among these capable lan-

guages is ultimately founded in personal

preference. Nonetheless, it should be

noted that Perl and Python benefit from

a relatively longer established tradition,

and subsequently more widespread use in

the field of bioinformatics. These facts

should not serve to discourage the use of

programming languages other than Perl or

Python. Java, for example, which is

popular in both academic curriculum

and industry, has served as the basis for

many successful bioinformatics projects.

Nonetheless, programmers stand to benefit

greatly from the many software tools,

libraries, and educational materials avail-

able supporting the use of Perl and Python

for bioinformatics [13–17].

In many cases, modern scripting languages

can be ‘‘bridged’’ to other languages such

that one is able to leverage the advanced

features of other languages without abandon-

ing the scripting language environment.

Examples include the RPy library [18],

which provides an interface between Python

and the R language, and JRuby [19], a Java-

based Ruby interpreter that enables interac-

tion between the Ruby language and Java.

Even if no formal scripting language interface

is available for a particular software library, it

is often possible to generate scripting lan-

guage interface using tools such as the

Simplified Wrapper and Interface Generator

(SWIG) [20] or to simply ‘‘wrap’’ an existing

executable using scripting language code.

Through this paradigm, one becomes capa-

ble of envisioning composite solutions that

incorporate the strengths of multiple lan-

guage technologies, instead of being limited

by the capabilities of a particular language.

Outside of programming languages there

exists a multitude of software tools, libraries,

and applications pertinent to various aspects

of bioinformatics, and it is worthwhile to

invest time in gaining broad knowledge of

the most popular of such resources across the

broad spectrum of bioinformatics. Addition-

ally, we encourage proficiency in the use and

maintenance of a Web server system, such as

Apache [21], as a survey of the bioinfor-

matics literature clearly demonstrates an

increasing trend towards the Web-based

development, delivery, and utilization of

bioinformatics tools and services.
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The Benefits and Opportunities
of Open Source Communities

Too often there is an urge among

programmers to reinvent the wheel despite

the availability of existing solutions. In

some cases this can be an innocent and

useful learning exercise, yet in most cases,

this is an improvident and wasteful

exercise. For many common problems in

bioinformatics (e.g., parsing file formats or

working with nucleotide data), it is often

the case that others have previously

implemented a solution to the problem,

and in many cases these solutions are

easily found implemented in open source

software in the public domain. While

general Internet search engines can be

useful in locating existing bioinformatics

source code, there are specialized search

engines, such as Koders [22] and Google

Code Search [23], that are specially

designed to search across the public

domain source code. These specialized

search engines offer code-specific search

options, such as the ability to constrain the

search to specific programming languages

or software licensing schemes. It is worth-

while to use these tools to search the public

domain for existing open source code that

might serve as inspiration for your own

program code, or even repurposed as the

basis for your own projects. It should be

noted, however, that if the decision to

repurpose open source code is made, it is

recommended to fully understand the

nature of the license under which open

source code is distributed and to ensure

that the redistribution terms set forth by

the original authors are respected. Fur-

thermore, as the modern bioinformatician

will invariably benefit from the vast body

of open source code in the public domain,

it is good citizenship to contribute your

bioinformatics source code into the public

domain under an open source license

when possible.

In bioinformatics, it is fortunate that

solutions to many common tasks and

problems have been codified into stan-

dardized, open source software frame-

works [24]. These frameworks are often

comprehensive, rigorously tested, docu-

mented, and engaged by vibrant and

helpful user communities. Language-spe-

cific, open source bioinformatics frame-

works are at the forefront of this effort,

with BioPERL [25,26], BioPython [27],

BioRuby [28,29], BioJava [30], and Bio-

Conductor [31] emerging as some of the

most mature and widely used frameworks.

Outside of pure bioinformatics there are a

number of useful open source frameworks

worth investigating, such as the SciPy [32]

and NumPy [33] for scientific computing

in Python and Ruby on Rails [34] for

rapid Web application development. We

would also urge those newer to bioinfor-

matics and programming in general to

engage these software framework commu-

nities as both a user and a contributor.

Taking the time to understand the source

code behind these frameworks and their

system design can be highly educational,

and members of framework user commu-

nities are often more than willing to

constructively critique another’s source

code and program designs. Furthermore,

active participation in an open source

bioinformatics project can be noted on

one’s resume or CV as ‘‘on the job’’

bioinformatics experience, which can of-

ten be hard to gain for fledgling students

and practitioners of bioinformatics.

The Importance of UNIX Skills

Even if you don’t choose to run a UNIX-

based Operating System (OS) on your

personal workstation, knowledge of UNIX

is tremendously useful in bioinformatics.

Although the Windows platform is perfectly

adequate for bioinformatics, the simple

truth is that the majority of bioinformatics

computation happens on UNIX-based

computer systems. A portion of this cir-

cumstance may be attributable to a tradi-

tion of scientific computing on UNIX and

the availability of many free, open source

UNIX-based OS, such as Linux. Even so, it

can be argued that a UNIX-based OS

offers several advantages when it comes to

facilitating bioinformatics. Perhaps one of

the most compelling reasons to learn UNIX

is to avoid programming altogether by

leveraging the flexible and extensible

UNIX shell environment. UNIX systems

provide access to a vast array of specialized

utilities that are executed by a command

interpreter known as the UNIX shell.

While these commands are often limited

to very specialized functionality (e.g., the

‘‘cat’’ command simply concatenates and

prints files), the UNIX pipe operator, ‘‘|’’,

makes it possible to create ad hoc software

pipelines by connecting the output of one

command to the input of another. The

software pipeline paradigm is common in

bioinformatics [35], where many biological

questions are evaluated by chaining spe-

cialized bioinformatics tools together into

an analysis pipeline (e.g., BLAST search R
Multiple sequence alignmentR Phyloge-

netic analysis) using a scripting language. In

many cases, it is possible to avoid time-

consuming and mundane programming

tasks by simply chaining together a number

of UNIX commands using the pipe oper-

ator (e.g., cut -f1 results.txt | grep

‘‘miRNA’’ | sed s/T/U/ . outfile.

txt). It is also trivial to execute these

utilities from within a program script to

provide discrete functionality in place of

additional script code (e.g., invoking the

‘‘gzip’’ utility to compress data files).

In the past, access to UNIX-based

systems was fairly limited, and program-

mers typically gained text-based terminal

access to UNIX-based systems by logging

in to expensive, proprietary computer

systems housed in university computing

labs and research centers. Today it is

possible to install a variety of user-friendly

UNIX-based systems, such as Mac OS X

or the open source Ubuntu Linux distri-

bution [36], on a personal computer.

There are even specialized Linux distri-

butions available, such as BioBrew [37],

which have been specially designed to

support bioinformatics computing. ortu-

nately the Cygwin project [38] brings a

large degree of UNIX functionality to

Windows-based systems; nonetheless there

exist many bioinformatics tools and librar-

ies that run only on, or are optimized

specifically for, UNIX-based systems.

Keeping Projects Documented
and Manageable

It’s difficult to produce clean, error-free,

and reusable code without good program-

ming hygiene. This includes using a clear

and consistent variable naming conven-

tion, documenting your code, and for

sufficiently large and complex projects,

testing and building your code on a

regular basis. Unfortunately, much like

the many tasks associated with physical

hygiene, these activities are often tedious,

mundane, and apt to spark bemoaning or

outright disregard by those expected to

participate in them. Nonetheless the world

of computer programming is fortunate to

have a wealth of tools available whose

sole purpose is to automate many of its

mundane aspects.

In this era of open source software and

collaborative research, it’s likely that the

program code you write will provide value

to others. In fact, many journals will now

require you to publish your source code

along with a manuscript. Good documen-

tation is key to making good sense of code,

but it is often neglected due to its tedious

nature, or the oft-erroneous belief that

neither yourself nor anyone else will ever

use the source code again. The best way to

get into the habit of good code documen-

tation is to automate it. Tools like Doxy-

gen [39], JavaDoc [40], PyDoc [41], and

others offer lightweight means for docu-
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menting code and easily generating for-

malized code documentation. Good vari-

able naming is also an important aspect of

good documentation. Resist the urge to

use non-descriptive names for your vari-

ables (e.g., a1 or var1) and try to be as

consistent and verbose as necessary (e.g.,

database_connection). Many programming

language communities have established

preferred variable naming conventions

[42], and therefore it is advisable to see if

such conventions exist for the languages

you use regularly. Well-documented code

is easy for others to use, and if people can

easily use your code, it’s likely that the

value you are providing to others will

translate into increased opportunities per-

sonally and professionally. Also, many

potential employers will want to see code

you’ve written, and therefore it’s beneficial

to have a large portfolio of well-docu-

mented program code on hand for job

interviews.

If you are working on a sufficiently large

and complex bioinformatics project, it’s likely

that you may need to regularly build and test

your software, deploy it to various Web

server systems, or execute complex compu-

tational tasks as part of the work. Fortunately

this process can be extensively automated by

a number of freely available task automation

software tools. The venerable UNIX ‘‘make’’

utility [43] is somewhat of a progenitor of

many modern task automation tools. At its

core, ‘‘make’’ will read and execute any

number of tasks from a Makefile, which are

defined using a structured macro language.

Modern variants of ‘‘make,’’ such as Apache

Ant [44], SCons [45], and Rake [46], offer

functionality similar to ‘‘make’’ and are

sometimes more intuitive to work with.

Given their generalized nature and extensi-

bility, programmers will find that nearly

every aspect of building, testing, packaging,

deploying, and executing program code can

be automated using some form of task

automation software.

Preserving Your Source Code

Perhaps the only certainties in computer

programming are that (i) there is a high

probability that you will introduce new

bugs every time you modify your code and

(ii) your computer hardware accumulates

an increased prior probability of failure

over its lifetime. Despite this, many pro-

grammers are content to keep their pre-

cious source code strewn across their disk

drives in the form of disordered, non-

redundant files. Several Version Control

Systems (VCS), which keep track of

changes to source code files over time and

offer the ability to revert and merge

changes, are freely available. Despite the

benefits offered by VCS, these systems

remain underutilized by many program-

mers, and particularly in academic settings.

Open source VCS such as CVS [47],

Subversion [48], and Git [49] are simple

to obtain, set up, and use, and many easy-

to-use front end clients for these systems are

freely available. The majority of modern

text and source code editors also have

support for VCS built in or offered through

a plug-in or extension. VCS clients such as

TortiseSVN [50] and SCPlugin [51] can

even integrate VCS functionality at the OS

file system level, such that source code

versioning functionality is available through

the OS file explorer utilities. Given their

ease of use and low barrier of entry, there is

almost no excuse for managing your source

code outside of a VCS. If you are working

on source code as a team, then use of VCS

is a necessity, as they offer features such as

file locking and automated change merging

in cases where multiple people are modify-

ing the same source code files. It is not

necessary for one to set up and maintain

their own VCS server system, as many free

online services, such as SourceForge [52]

and GitHub [53], offer standard VCS

capabilities with many added features.

The use of VCS can also be expanded

beyond source code and is often used by

academics to track and manage multiple

versions of grants and manuscripts. Fur-

thermore, many jobs in academia and

especially industry will require the use of a

VCS. Therefore experience with such

systems will serve to enhance a personal

and professional career in bioinformatics.

Many programmers also fail to realize the

importance of backing up their computer

systems until they’ve suffered a loss of their

valuable source code through hardware

failure, theft, or otherwise. Historically,

computer backups required the involvement

of IT departments, expensive backup soft-

ware systems, and explicit scheduling of

backup events. It is likely that these factors

have contributed to the underutilization of

backup software among students and cost-

conscious academics. Recently, a new model

of continuous, incremental computer back-

ups, sometimes referred to as ‘‘snapshot-

ting,’’ has emerged from a number of

vendors and Web application service pro-

viders. These services, such as Mozy [54]

and IDrive [55] (commercial services are

given for example only), install a software

client on a computer that monitors the

computer for file system changes, streaming

continuous backups of the computer’s file

system to encrypted, redundant online

backup storage servers. The main advantage

of these services is that after the initial setup,

the software will continue to back up your

files without any explicit intervention from

the user (which is why they are sometimes

also referred to as ‘‘set it and forget it’’

backup software). While most of these

services are commercial endeavors, many

offer free accounts that provide ample

storage for source code and other important

documents. At the time of this writing, open

source implementations of such systems,

such as TimeVault [56], are just beginning

to emerge, but we expect many similar open

source projects to appear and mature in the

near future. Of course, backup software and

systems themselves can fail; therefore it is

provident to mitigate risk by implementing a

redundant backup plan that incorporates

two or more systems or services (e.g.,

backing up to an external hard disk and to

an online backup service).

Embracing Parallel Computing
Paradigms

Parallel programming and execution

can drastically enhance the speed of many

computational tasks in bioinformatics,

however the perceived complexity of

parallel programming often serves to deter

many from using it effectively in their

bioinformatics work. There are essentially

two major types of computational tasks

that can be parallelized in software, which

are defined by their dependency model as

either Loosely Coupled (LC) or Tightly

Coupled (TC). LC tasks are those whose

execution does not depend on the state or

output of any other computational task of

the same class. Examples in bioinformatics

would include a program that computes

ligand-receptor binding affinities across

many possible independent ligand-recep-

tor combinations or a program that

computes multiple sequence alignments

for many independent protein families. LC

tasks are generally the easiest to paralle-

lize, as they often entail executing the

same program logic on different data files

or on the same data files using different

parameters. There are many software

systems available that are designed to

facilitate the execution and control of LC

task parallelization. Among the most

popular are open source systems such as

Sun Grid Engine (SGE) [57] and Open

Portable Batch System (OpenPBS) [58].

Such systems are often referred to as job

scheduling or batch processing systems,

and they are routinely used to distribute

individual computational tasks across

groups of networked computers.

TC tasks are those whose execution is

dependent on the state or output of other

tasks. Examples in bioinformatics include
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molecular dynamics simulations or sto-

chastic optimization heuristics. TC tasks

are generally more difficult to implement,

as they typically require programs to

incorporate calls to functions from paral-

lelization libraries, such as Message Pass-

ing Interface (MPI)–based libraries [59],

and leave many complex details of parallel

execution, synchronization, and consisten-

cy checking to the programmer.

Recently, a new paradigm for parallel

computing, commonly referred to as

MapReduce [60], was introduced by

Google as a simplified software framework

for parallelizing computation across large

clusters of commodity computers. Since it

was initially described, a large number of

open source MapReduce projects have

been implemented in various program-

ming languages, such as Hadoop (Java)

[61], Disco (Python) [62], and Skynet

(Ruby) [63]. In essence, MapReduce

frameworks help to break tasks down into

discrete sub-problems (the Map step),

which are distributed to networked com-

pute nodes, and cohesively aggregate the

results of the independent sub-tasks (the

Reduce step). Although MapReduce is not

suitable in every case where parallelization

may be needed, many bioinformaticians

are experimenting with MapReduce [64],

and it is already showing great promise in

accelerating short read mapping from

high-throughput sequencing data sets [65].

It is important to note that it is not

necessary to have access to a formal

computing cluster to utilize parallel compu-

tation. Most of the software frameworks that

facilitate parallel computing can execute

parallel processes across multiple CPUs on a

single machine. At the time of this writing, a

computer workstation with 8 CPU cores can

be purchased for less than US$3,000.00;

thus substantial parallel computing capabil-

ities can be rather easily obtained by even

those with the most modest budgets. Fur-

thermore, virtualized, or ‘‘cloud,’’ comput-

ing services, such as the Amazon Elastic

Compute Cloud (EC2) [66], provide an

economical means to procure vast comput-

ing resources to facilitate parallel computa-

tion on an as-needed basis. Consequently,

large, publicly funded biocomputing initia-

tives, such as the Cancer Biomedical

Informatics Grid (caBIG) [67], have begun

to investigate such cloud computing archi-

tectures to support their efforts.

Structuring Data for Speed and
Scalability

The tradition of using flat files in

bioinformatics (i.e., storing data records

in large text files) is out of step with current

needs. In the modern era of integrative

biology and medicine, we are often faced

with the task of integrating data from

multiple sources in complex ways (e.g.,

relating SNPs, gene expression, and pro-

teomics data to build models of gene

regulation). The use of flat files often

requires the programmer to load huge

numbers of data records into system

memory, and then index and join these

data using custom program logic. Rela-

tional Database Management Systems

(RDBMS), such as MySQL [68], are well

suited for such tasks, yet they remain

underutilized by many in bioinformatics.

The utilization of RDBMS can be intim-

idating to those without formal database

training, as they often require the set-up

and management of database server sys-

tems, and their contents must be defined

and queried using the somewhat peculiar

Structured Query Language (SQL).

The conceptual incongruities between

RDBMS and modern object-oriented pro-

gramming paradigms have spurred the

development of Object Relational Map-

ping (ORM) frameworks, which provide

language-specific, object-oriented interfac-

es to traditional RDBMS. ORMs virtually

eliminate the need to write SQL statements

to interact with the RDBMS. Instead, a

programmer instantiates native language

data structures (typically an object sub-

classed from an ancestor class defined by

the ORM framework), and calls to methods

of these data structures are automatically

translated by the ORM into the appropri-

ate SQL query statements. ORMs work

bidirectionally, such that any results re-

turned by the database are also translated

into native language data structures. For a

simple example, an invocation of the

following ORM pseudo code:

translated_sequence=Protein-

Sequence. find(10)

might automatically generate the fol-

lowing SQL statement:

SELECT * FROM protein_sequences

WHERE id=10’’

The ORM would then automatically

execute the statement in the RDBMS and

use the results of the query to instantiate

the variable translated_sequence as an

object of the class ProteinSequence whose

attributes and data match those defined by

the fields in the translated_sequence table

row with the key field id = 10. A potential

downside of ORMs is that many require

the database structure to conform to a

predefined convention, making it some-

times difficult to use ORMs with existing

databases. Also, the SQL queries generat-

ed by ORMs can sometimes make subop-

timal use of the database’s indexing and

joining capabilities. Popular open source

ORMs include ActiveRecord (Ruby) [69],

SQLObject (Python) [70], Hibernate (Ja-

va) [70], and DBIx::Class (Perl) [71].

There are a number of alternative

database systems that offer many of the

advantages of RDBMS without the over-

head of server set-up and maintenance.

SQLite is a fully embeddable, server-less

RDBMS engine that allows for the

creation of portable, relational database

files that can be queried using SQL via a

lightweight C library, for which many

high-level and scripting language interfac-

es are available. SQLite can also be used

in conjunction with many ORM frame-

works, drastically reducing the complexity

of incorporating fast, structured data

storage into bioinformatics scripts and

applications. Another server-less database

system is BerkeleyDB, which also inte-

grates into software via a lightweight C

library but differs in that it offers a simpler

key/data model rather than a relational

data model. For many bioinformatics

tasks, we seek to integrate data objects by

unique identifiers (e.g., matching gene

expression and SNP data by Entrez

GeneID), which is particularly amenable

to the key/data paradigm behind hash-like

database systems such as BerkeleyDB.

The key/data database model has

proven to be particularly scalable, forming

the conceptual basis of a new breed of

distributed, large-scale database systems

used to crawl Internet-scale (i.e., multi-

terabyte) datasets. Open source implemen-

tations of these systems include HBase

[72], Hypertable [73], and Cassandra

[74], which are being used by some of

the world’s largest Internet companies,

often in conjunction with MapReduce-

based parallel computations. These data-

base systems are also well suited for

working with bioinformatics data of sim-

ilar scale. Also worth investigating are

so-called ‘‘schema-less’’ or ‘‘document-

oriented’’ database systems, in which

database objects can be defined in an ad

hoc manner using key/data field defini-

tions. Examples include CouchDB [75],

MongoDB [76], and Tokyo Cabinet [77].

These systems offer more flexible query

interfaces with optimizations for Web-

based applications and are already show-

ing some promise in the development of

bioinformatics Web applications [78].

Understand the Capabilities of
Hardware

Although we advise the use of high-level

scripting languages for many aspects of

bioinformatics, it is still important to
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understand how various features of mod-

ern computer hardware architectures can

be leveraged to substantially enhance and

accelerate bioinformatics. Many recent

innovations in computer hardware designs

were born from the needs of 3D computer

gaming, where the mathematical and

computational needs are oftentimes on

par with that of bioinformatics. Therefore

bioinformaticians can and have repur-

posed these technologies to enhance and

accelerate a broad range of tasks in

bioinformatics, and in many cases, to

dramatic effect [79].

One straightforward means of using

hardware to accelerate bioinformatics code

is to vectorize its execution using the Single

Instruction, Multiple Data (SIMD) instruc-

tion sets offered by all modern workstation

CPUs. SIMD capabilities are referred to by

different names depending on implemen-

tation and manufacturer (e.g., SSE in Intel

x86 and Altivec in PowerPC CPUs), but

their overall purpose and capabilities are

essentially the same. The extent of code

vectorization possible using SIMD is de-

pendent on various features of the CPU

vector units, but generally, SIMD allows a

set of instructions that would normally be

executed serially (e.g., a ‘‘for’’ loop of 1..n

floating point calculation) to be executed in

parallel per CPU cycle (e.g., four loop

iterations at a time). Many free and

commercial compilers now have auto-

vectorization capabilities, which attempt

to analyze your code and automatically

optimize sections of program execution

using SIMD when possible. Therefore

existing bioinformatics applications may

find speed gains through a simple recom-

piling of the source code with the compiler’s

SIMD optimization capabilities enabled.

SIMD optimization has already been used

in bioinformatics to substantially improve

the performance of many sequence match-

ing and alignment algorithms [80–83].

The vector computing paradigms ush-

ered in by SIMD have been extended

towards the development of specialized

Graphics Processing Units (GPU), which

act independently from the primary

CPU(s) to process 2D and 3D graphics

rendering. Because of their computational

prowess for certain types of mathematical

computations and transformations, which

can be up to several orders of magnitude

faster than the primary CPU(s) for similar

tasks, GPUs have been appropriated for

tasks beyond graphics processing, engen-

dering the development of several tech-

niques for General Purpose computing on

GPU (GPGPU). GPGPU is facilitated by a

number of software frameworks, such as

CUDA [84] and OpenCL [85], which aim

to provide generalized programming in-

terfaces to the GPU hardware. Not

surprisingly, GPGPU has already been

successfully harnessed by bioinformati-

cians to drastically accelerate tasks related

to sequence alignment [86,87] and molec-

ular dynamics simulations [88]. Interest-

ingly, a number of scripting language

interfaces are being developed for GPGPU

libraries, such as gputools (R) [89] and

pystream (Python) [90], making GPGPU

hardware acceleration capabilities accessi-

ble to those who are most comfortable

working with high-level languages.

Another hardware technology of note for

bioinformatics is the Field Programmable

Gate Array (FPGA). An FPGA can be

loosely conceptualized as a dynamically

reconfigurable CPU, where the logical

elements found within the chip can be

dynamically reconfigured using a specialized

hardware description language. The benefit

of FPGAs for bioinformatics comes from the

fact that it is possible to implement certain

types of bioinformatics algorithms within the

FPGA, effectively enabling the creation of

customized hardware acceleration for bioin-

formatics computations. FPGA-based hard-

ware acceleration has already been demon-

strated for several bioinformatics

applications, including sequence alignment

[91–93], molecular dynamics [94], and

proteomics [95]. Additionally, a number of

specialized FPGAs for bioinformatics appli-

cations can be readily purchased ‘‘off the

shelf’’ from commercial vendors.

Embracing Standards and
Interoperability

Data exchange and interoperability is an

old problem in bioinformatics that has

engendered the development of a number

of standardized data file formats. However,

efforts to standardize data are often con-

tentious and slow to keep pace with

emerging data types. While it is most noble

to use an established, standardized data

format when possible, it is sometimes not

possible or practical. Still, there are habits

that can be put into practice that make it

easier to share your data with others. The

most basic approach is to use a markup

language, such as the eXtensible Markup

Language (XML), to provide some basic

structure and annotation for your data

format. XML parsers or XML Stylesheet

Language Transformations (XSLT) can be

easily used to convert data structured by

XML to any number of alternative formats.

Although XML may be seen as overkill for

simpler data formats, efforts should still be

made to provide your data in a format that

is easily consumable by others. Comma- or

tab-delimited file formats are a common-

place means for representing data when

data can be represented in tabular form,

however this approach is not practical

when the format is required to define

complex relationships between entities,

nor do they permit encapsulated nesting

of data elements within others. Although

XML would be applicable in such situa-

tions, its use can be cumbersome to those

unfamiliar with it; therefore one could

alternatively use the lightweight data seri-

alization formats such as JavaScript Object

Notation (JSON) [96] or YAML [97] to

provide a lightweight data format that is

easily interpreted by both humans and

programming languages.

Another alternative when it comes to

facilitating data exchange is to avoid file

formats altogether, and instead provide

programmatically accessible, Web-based

interfaces to your data sources. One

means to do this is to expose your data

sources using standardized Web-service

interfaces, such as Representational State

Transfer (ReST) [98] or Web Services

Description Language (WSDL) [99], for

which many counterpart implementation

libraries exist for a large number of

programming languages. This would allow

others to access your data sources directly

from program code, potentially reducing

the burden for sharing large data sets with

collaborators and communities.

When providing data for others, it is also

important to use as many standardized data

and concept identifiers as possible. It is

unfortunate that so much effort has gone

into the development of text mining tools

and techniques for identifying which species,

diseases, and drugs are represented in public

datasets, because many of these concepts are

defined by these data using inconsistent,

free-text labels. If the designers of these file

formats and data repositories had required

the use of the many systematized nomen-

clatures available, such as the many defined

within the freely available Unified Medical

Language System (UMLS) [100], then it

would be much easier to systematically

query and appropriate these vast public

data repositories for downstream research.

Online services such as The Open Biomed-

ical Ontologies Foundry [101] and the

NCBO BioPortal [102] offer rich, Web-

based interfaces for discovering and explor-

ing a large number of existing biomedical

ontologies available in the public domain.

Value Your Time

The advent of open source software and

the commoditization and virtualization of

computing hardware have drastically re-
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duced the cost of software development.

By far, the most expensive aspect of

software development today is the pro-

grammer’s time, and thus the success of

programming efforts in academia or

industry will be invariably tied to effective

use of programmer time. One major

source of time inefficiency in software

development is an imbalance of architec-

ture versus accomplishment. The urge to

create this imbalance is particularly strong

when developing large, object-oriented

systems, where programmers might be

inclined to code excessively complex data

models, in an effort to build a system that

accounts for all possible points of failure

and edge cases. There is always room to

improve a system to make it more

‘‘perfect.’’ Therefore in regards to pro-

gram design, we assert it is best to invoke

Voltaire’s adage, ‘‘The perfect is the

enemy of the good.’’ The most highly

used and cited bioinformatics tools simply

work well enough to do a reasonably good

job at the specific task for which they were

designed. The success of bioinformatics

software is based not on the elegance of

the software design, but rather its utility as

a tool for driving and answering biological

questions. Consequently it is no surprise

that many successful bioinformatics apps

are written by biologists who lack formal

computer science training, as they un-

doubtedly put scientific utility ahead of

architectural elegance and completeness.

The key to effective use of programming

time is to put a high value on your time.

As a guide, it can be helpful to put a value

on your time based on your salary,

stipend, or personal goals. If you deter-

mine your programming time to be worth

$100 an hour, is it reasonable to take the

time to re-implement a statistical method

in code if you can purchase a commercial

software library that can provide it for

$50? Is it reasonable to spend weeks

to optimize an algorithm if $2,000 in

additional computing hardware will ac-

complish the same performance gains? As

a general principle, outsource or purchase

everything but genius to maximize your

contribution to driving scientific questions

and accomplishment.

Conclusion

Although there are many factors and

principals underlying excellence in bioin-

formatics, the rules presented here aim to

convey a set of pragmatic knowledge and

principals that are most likely to offer high

value to programmers across the broad

spectrum of bioinformatics in both acade-

mia and industry. The relevance of many

of the rules outlined here can be directly

evaluated though a survey of the bioinfor-

matics positions described within scientific

job sites, such as Nature Jobs (http://

www.naturejobs.com) and Science Jobs

(http://www.sciencejobs.com). For exam-

ple, at the time of this writing, a search for

the term ‘‘UNIX’’ finds more than 100

open positions seeking proficiency in

UNIX.

Readers should take note that the

landscape of tools and technologies used

in bioinformatics is constantly changing

and that long-term success in bioinfor-

matics requires one to stay abreast of these

changes. Readers are encouraged to make

use of newsreaders to subscribe to the RSS

feeds of the many journals, blogs, and user

community sites oriented towards bioin-

formatics. Readers are also encouraged to

join the many vibrant bioinformatics user

communities established within popular

social networking sites, such as LinkedIn

(http://www.linkedin.com), FriendFeed

(http://www.friendfeed.com), Epernicus

(http://www.epernicus.com), and Twine

(http://www.twine.com).
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